Penn State Erie, The Behrend College, Erie, Pennsylvania 16563, USA.
Nurs Res. 2011 Mar-Apr;60(2):148-53. doi: 10.1097/NNR.0b013e318209785a.
Sample sizes set on the basis of desired power and expected effect size are often too small to yield a confidence interval narrow enough to provide a precise estimate of a population value.
Formulae are presented to achieve a confidence interval of desired width for four common statistical tests: finding the population value of a correlation coefficient (Pearson r), the mean difference between two populations (independent- and dependent-samples t tests), and the difference between proportions for two populations (chi-square for contingency tables).
Use of the formulae is discussed in the context of the two goals of research: (a) determining whether an effect exists and (b) determining how large the effect is. In addition, calculating the sample size needed to find a confidence interval that captures the smallest benefit of clinical importance is addressed.
基于所需功效和预期效果大小设定的样本量往往太小,无法产生足够窄的置信区间,从而无法对总体值进行精确估计。
本文提出了实现四种常见统计检验置信区间所需宽度的公式:计算相关系数(皮尔逊 r)、两个总体之间的均值差(独立样本和依赖样本 t 检验)和两个总体之间比例差(列联表卡方检验)的总体值。
本文在研究的两个目标的背景下讨论了公式的使用:(a)确定是否存在效果,以及 (b)确定效果的大小。此外,还讨论了计算所需样本量以找到捕获临床重要性最小益处的置信区间的问题。