Departamento de Fisicoquímica and ‡Departamento de Matemática y Física, Facultad de Ciencias Químicas and Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Universidad Nacional de Córdoba , Córdoba, Argentina.
Langmuir. 2011 Mar 15;27(6):2613-24. doi: 10.1021/la104701g. Epub 2011 Feb 21.
Despite the widespread use of chlorinated silicon as the starting point for further functionalization reactions, the high reactivity of this surface toward a simple polar molecule such as ammonia still remains unclear. We therefore undertook a comprehensive investigation of the factors that govern the reactivity of halogenated silicon surfaces. The reaction of NH3 was investigated comparatively on the Cl-Si(100)-2 × 1, Br-Si(100)-2 × 1, H-Si(100)-2 × 1, and Si(100)-2 × 1 surfaces using density functional theory. The halogenated surfaces show considerable activation with respect to the hydrogenated surface. The reaction on the halogenated surfaces proceeds via the formation of a stable datively bonded complex in which a silicon atom is pentacoordinated. The activation of the halogenated Si(100)-2 × 1 surfaces toward ammonia arises from the large redistribution of charge in the transition state that precedes the breakage of the Si-X bond and the formation of the Si-NH2 bond. This transition state has an ionic nature of the form Si-NH3(+)X(-). Steric effects also play an important role in surface reactivity, making brominated surfaces less reactive than chlorinated surfaces. The overall activation-energy barriers on the Cl-Si(100)-2 × 1 and Br-Si(100)-2 × 1 surfaces are 12.3 and 19.9 kcal/mol, respectively, whereas on the hydrogenated Si(100)-2 × 1 surface the energy barrier is 38.3 kcal/mol. The reaction of ammonia on the chlorinated surface is even more activated than on the bare Si(100)-2 × 1 surface, for which the activation barrier is 21.3 kcal/mol. Coadsorption effects in partially aminated surfaces and in the presence of reaction products increase activation-energy barriers and have a blocking effect for further reactions of NH3.
尽管氯化硅被广泛用作进一步功能化反应的起点,但这种表面对简单极性分子(如氨)的高反应性仍不清楚。因此,我们全面研究了控制卤化硅表面反应性的因素。使用密度泛函理论比较研究了 NH3 在 Cl-Si(100)-2×1、Br-Si(100)-2×1、H-Si(100)-2×1 和 Si(100)-2×1 表面上的反应。卤化表面相对于氢化表面显示出相当大的活化作用。卤化表面上的反应通过形成稳定的配位键络合物进行,其中一个硅原子是五配位的。卤化 Si(100)-2×1 表面对氨的活化是由于在 Si-X 键断裂和 Si-NH2 键形成之前的过渡态中电荷的大量重新分布引起的。这个过渡态具有 Si-NH3(+)X(-)的形式的离子性质。空间位阻效应也在表面反应性中起着重要作用,使溴化表面比氯化表面的反应性差。Cl-Si(100)-2×1 和 Br-Si(100)-2×1 表面上的总活化能垒分别为 12.3 和 19.9 kcal/mol,而氢化 Si(100)-2×1 表面上的能量垒为 38.3 kcal/mol。氨在氯化表面上的反应甚至比在裸露的 Si(100)-2×1 表面上更活跃,氯化表面上的活化能垒为 21.3 kcal/mol。部分氨基化表面中的共吸附效应和反应产物的存在增加了活化能垒,并对 NH3 的进一步反应具有阻断作用。