Suppr超能文献

新月柄杆菌严格响应调控的复杂逻辑:贫营养环境中的饥饿信号。

The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment.

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.

出版信息

Mol Microbiol. 2011 May;80(3):695-714. doi: 10.1111/j.1365-2958.2011.07602.x. Epub 2011 Mar 16.

Abstract

Bacteria rapidly adapt to nutritional changes via the stringent response, which entails starvation-induced synthesis of the small molecule, ppGpp, by RelA/SpoT homologue (Rsh) enzymes. Binding of ppGpp to RNA polymerase modulates the transcription of hundreds of genes and remodels the physiology of the cell. Studies of the stringent response have primarily focused on copiotrophic bacteria such as Escherichia coli; little is known about how stringent signalling is regulated in species that live in consistently nutrient-limited (i.e. oligotrophic) environments. Here we define the input logic and transcriptional output of the stringent response in the oligotroph, Caulobacter crescentus. The sole Rsh protein, SpoT(CC), binds to and is regulated by the ribosome, and exhibits AND-type control logic in which amino acid starvation is a necessary but insufficient signal for activation of ppGpp synthesis. While both glucose and ammonium starvation upregulate the synthesis of ppGpp, SpoT(CC) detects these starvation signals by two independent mechanisms. Although the logic of stringent response control in C. crescentus differs from E. coli, the global transcriptional effects of elevated ppGpp are similar, with the exception of 16S rRNA transcription, which is controlled independently of spoT(CC). This study highlights how the regulatory logic controlling the stringent response may be adapted to the nutritional niche of a bacterial species.

摘要

细菌通过严谨反应迅速适应营养变化,这需要 RelA/SpoT 同源物 (Rsh) 酶在饥饿诱导下合成小分子 ppGpp。ppGpp 与 RNA 聚合酶结合调节数百个基因的转录,并重塑细胞的生理学。严谨反应的研究主要集中在营养丰富的细菌(如大肠杆菌)上;对于生活在持续营养有限(即贫营养)环境中的物种,严谨信号如何被调节,知之甚少。在这里,我们定义了贫营养型细菌新月柄杆菌中严谨反应的输入逻辑和转录输出。唯一的 Rsh 蛋白 SpoT(CC) 与核糖体结合并受其调节,表现出 AND 型控制逻辑,其中氨基酸饥饿是激活 ppGpp 合成的必要但不充分的信号。虽然葡萄糖和铵饥饿都上调 ppGpp 的合成,但 SpoT(CC) 通过两种独立的机制检测这些饥饿信号。尽管 C. crescentus 中严谨反应控制的逻辑与大肠杆菌不同,但升高的 ppGpp 的全局转录效应相似,除了 16S rRNA 转录,它独立于 spoT(CC) 进行控制。这项研究强调了控制严谨反应的调节逻辑如何适应细菌物种的营养生态位。

相似文献

1
The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment.
Mol Microbiol. 2011 May;80(3):695-714. doi: 10.1111/j.1365-2958.2011.07602.x. Epub 2011 Mar 16.
3
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
J Bacteriol. 2014 Jul;196(14):2514-25. doi: 10.1128/JB.01575-14. Epub 2014 May 2.
5
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
J Bacteriol. 2012 Jan;194(1):28-35. doi: 10.1128/JB.05932-11. Epub 2011 Oct 21.
6
Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.
Plant Biol (Stuttg). 2011 Sep;13(5):699-709. doi: 10.1111/j.1438-8677.2011.00484.x. Epub 2011 May 31.
7
Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli.
J Mol Biol. 1996 May 31;259(1):41-57. doi: 10.1006/jmbi.1996.0300.
8
SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD.
J Bacteriol. 2010 Nov;192(22):5991-6000. doi: 10.1128/JB.00440-10. Epub 2010 Sep 10.
9
Convergence of alarmone and cell cycle signaling from trans-encoded sensory domains.
mBio. 2015 Oct 20;6(5):e01415-15. doi: 10.1128/mBio.01415-15.
10
SpoT Induces Intracellular Virulence Programs in the Phagosome.
mBio. 2020 Feb 25;11(1):e03397-19. doi: 10.1128/mBio.03397-19.

引用本文的文献

1
Disrupting NtrC function reveals unexpected robustness in a central cell cycle regulatory network.
mBio. 2025 Sep 10;16(9):e0196225. doi: 10.1128/mbio.01962-25. Epub 2025 Aug 18.
2
Biomolecular condensates as stress sensors and modulators of bacterial signaling.
PLoS Pathog. 2024 Aug 15;20(8):e1012413. doi: 10.1371/journal.ppat.1012413. eCollection 2024 Aug.
4
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
PNAS Nexus. 2024 Apr 10;3(4):pgae154. doi: 10.1093/pnasnexus/pgae154. eCollection 2024 Apr.
5
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
bioRxiv. 2023 Dec 21:2023.12.20.572625. doi: 10.1101/2023.12.20.572625.
6
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
7
The NtrB-NtrC two-component system bridges nitrogen assimilation and cell development.
J Bacteriol. 2023 Oct 26;205(10):e0018123. doi: 10.1128/jb.00181-23. Epub 2023 Oct 4.
8
Clinical mutations in prime pathogen expansion under nutrient stress.
mSphere. 2023 Oct 24;8(5):e0024923. doi: 10.1128/msphere.00249-23. Epub 2023 Sep 26.
9
The NtrB-NtrC two-component system bridges nitrogen assimilation and cell development.
bioRxiv. 2023 Aug 31:2023.06.06.543975. doi: 10.1101/2023.06.06.543975.
10
EstG is a novel esterase required for cell envelope integrity in Caulobacter.
Curr Biol. 2023 Jan 23;33(2):228-240.e7. doi: 10.1016/j.cub.2022.11.037. Epub 2022 Dec 13.

本文引用的文献

1
The mechanism for activation of GTP hydrolysis on the ribosome.
Science. 2010 Nov 5;330(6005):835-838. doi: 10.1126/science.1194460.
2
Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin-antitoxin systems.
Mol Microbiol. 2010 Jul 1;77(1):236-51. doi: 10.1111/j.1365-2958.2010.07207.x. Epub 2010 May 12.
3
The genetic basis of laboratory adaptation in Caulobacter crescentus.
J Bacteriol. 2010 Jul;192(14):3678-88. doi: 10.1128/JB.00255-10. Epub 2010 May 14.
4
DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade.
Mol Microbiol. 2009 Dec;74(6):1368-79. doi: 10.1111/j.1365-2958.2009.06939.x. Epub 2009 Nov 2.
5
6
Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
Mol Microbiol. 2009 Apr;72(2):380-98. doi: 10.1111/j.1365-2958.2009.06653.x. Epub 2009 Mar 4.
7
Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence.
Mol Microbiol. 2009 Mar;71(5):1190-1204. doi: 10.1111/j.1365-2958.2008.06593.x.
8
Genetic and computational identification of a conserved bacterial metabolic module.
PLoS Genet. 2008 Dec;4(12):e1000310. doi: 10.1371/journal.pgen.1000310. Epub 2008 Dec 19.
9
The stringent response and cell cycle arrest in Escherichia coli.
PLoS Genet. 2008 Dec;4(12):e1000300. doi: 10.1371/journal.pgen.1000300. Epub 2008 Dec 12.
10
SpoT governs Legionella pneumophila differentiation in host macrophages.
Mol Microbiol. 2009 Feb;71(3):640-58. doi: 10.1111/j.1365-2958.2008.06555.x. Epub 2008 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验