Boutte Cara C, Srinivasan Balaji S, Flannick Jason A, Novak Antal F, Martens Andrew T, Batzoglou Serafim, Viollier Patrick H, Crosson Sean
Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
PLoS Genet. 2008 Dec;4(12):e1000310. doi: 10.1371/journal.pgen.1000310. Epub 2008 Dec 19.
We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select alpha-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.
我们通过实验和计算确定了一组基因,它们在α-变形菌新月柄杆菌中形成一个保守的代谢模块,并利用这个模块来说明跨细菌属传播途径水平注释的模式。应用全面的正向和反向遗传方法以及全基因组转录分析,我们:(1)证实了参与丰富环境糖肌醇分解代谢的基因的存在;(2)确定了一个编码ABC家族肌醇跨膜转运蛋白的操纵子;(3)鉴定了一种新型肌醇调节蛋白和顺式作用调节基序,它们控制该代谢模块中基因的表达。尽管这些肌醇分解代谢酶和转运蛋白是由新月柄杆菌染色体上不连续的基因座编码的,但在计算推断的蛋白质关联网络中,它们形成了一个紧密相连的功能组。一级序列比较不足以将这个新型代谢模块的所有成分的注释可靠地扩展到相关细菌属。因此,我们实施了Graemlin多网络比对算法,以生成其他α-变形菌中参与肌醇转运和分解代谢的基因的跨物种预测。尽管这个功能模块中的基因在不同物种间的染色体组织有所不同,但在这个比对网络中基因的上游区域富含在新月柄杆菌中通过实验鉴定的相同回文顺式调节基序。苜蓿中华根瘤菌中编码计算预测的ABC肌醇转运蛋白的操纵子的转座子破坏消除了以肌醇作为唯一碳源的生长,证实了我们的跨属功能预测。因此,我们定义了调节、转运和分解代谢基因以及一个顺式作用调节序列,它们形成了特定α-变形菌中肌醇代谢所需的保守模块。此外,本研究描述了基因网络比对的正向验证,并说明了一种在细菌物种间可靠转移途径水平注释的策略。