Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
Chem Res Toxicol. 2011 Mar 21;24(3):303-13. doi: 10.1021/tx1001892. Epub 2011 Feb 22.
Although nanozinc oxide (nano-ZnO) is applied widely in photocatalysts and gas sensors and in biological fields, it can cause serious oxidative stress and DNA damage to mammalian cells. Our aim in this study was to reduce the cytotoxicity of nano-ZnO by coating it with a TiO(2) layer. We used a sol-gel method to synthesize core (nano-ZnO)/shell (TiO(2)) nanoparticles (NPs) with various degrees of coating. Transmission electron microscopy and Raman spectroscopy confirmed that TiO(2) was coated on the nano-ZnO. Moreover, a decrease in the intensity of the pre-edge signal in Ti K-edge X-ray absorption near edge structure spectra revealed that the core/shell NPs had more Ti-O coordination than pure TiO(2) particles; in addition, the Zn K-edge extended X-ray absorption fine structure spectra revealed that after the ZnO NPs had been coated with TiO(2), the coordination number of the ZnO shell increased to 3.3 but that of the ZnZn shell decreased to 6.2, providing further evidence for the ZnO/TiO(2) core/shell structure. To ensure that the core/shell structures did indeed decrease the toxicity of nano-ZnO, we tested the effects of equal amounts of physical mixtures of ZnO and TiO(2) NPs for comparison, employing methyl tetrazolium (MTT), interleukin-8 (IL-8), lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate (DCFH-DA) to assess the particle-induced cytotoxicity, inflammatory response, membrane damage, and intercellular reactive oxygen species (ROS). From X-ray diffraction patterns, we identified the TiO(2) shell as having an amorphous phase, which, unfortunately, exhibited slight cytotoxicity toward the human lung epithelial cell line (A549). Nevertheless, our core/shell nanostructures exhibited less oxidative stress toward A549 cells than did their corresponding ZnO/TiO(2) physical mixtures. In addition, a greater coating of TiO(2) decreased the toxicity of the ZnO NPs. It appears that the ZnO/TiO(2) core/shell structure moderated the toxicity of nano-ZnO by curtailing the release of zinc ions and decreasing the contact area of the ZnO cores.
尽管纳米氧化锌(nano-ZnO)广泛应用于光催化剂和气体传感器以及生物领域,但它会对哺乳动物细胞造成严重的氧化应激和 DNA 损伤。我们在这项研究中的目的是通过涂覆 TiO(2)层来降低纳米 ZnO 的细胞毒性。我们使用溶胶-凝胶法合成了具有不同涂覆程度的核(纳米 ZnO)/壳(TiO(2))纳米粒子(NPs)。透射电子显微镜和拉曼光谱证实 TiO(2)涂覆在纳米 ZnO 上。此外,Ti K 边 X 射线吸收近边结构谱中预边信号强度的降低表明核/壳 NPs 的 Ti-O 配位比纯 TiO(2)颗粒多;此外,Zn K 边扩展 X 射线吸收精细结构谱表明 ZnO NPs 涂覆 TiO(2)后,ZnO 壳的配位数增加到 3.3,但 ZnZn 壳的配位数减少到 6.2,进一步证明了 ZnO/TiO(2)核/壳结构的存在。为了确保核/壳结构确实降低了纳米 ZnO 的毒性,我们测试了等量的 ZnO 和 TiO(2) NPs 物理混合物的影响作为比较,采用甲基四唑(MTT)、白细胞介素 8(IL-8)、乳酸脱氢酶(LDH)和 2',7'-二氯荧光素二乙酸酯(DCFH-DA)来评估颗粒诱导的细胞毒性、炎症反应、膜损伤和细胞间活性氧(ROS)。从 X 射线衍射图谱中,我们确定 TiO(2)壳具有无定形相,不幸的是,它对人肺上皮细胞系(A549)表现出轻微的细胞毒性。然而,与相应的 ZnO/TiO(2)物理混合物相比,我们的核/壳纳米结构对 A549 细胞表现出较低的氧化应激。此外,TiO(2)的更大涂层降低了 ZnO NPs 的毒性。看来,ZnO/TiO(2)核/壳结构通过限制锌离子的释放和减少 ZnO 核的接触面积来调节纳米 ZnO 的毒性。