Graduate school of Engineering, Gunma University, Tenjin-cho 1-5-1, Kiryu, Gunma 376-8515, Japan.
BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S49. doi: 10.1186/1471-2105-12-S1-S49.
Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far.
This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis.
This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.
预测蛋白质中的酶活性位点不仅对蛋白质科学很重要,而且对各种实际应用(如药物设计)也很重要。由于酶反应机制基于酶活性位点的局部结构,因此迄今为止已经开发了各种基于模板的方法来比较蛋白质中的局部结构。在比较这些局部位点时,到目前为止一直使用简单的测量方法 RMSD。
本文介绍了改进局部结构比较相似度/偏差的新机器学习算法。相似度/偏差应用于两种类型的应用,即单模板分析和多模板分析。在单模板分析中,使用单个模板作为查询来搜索蛋白质中的活性位点,而在多模板分析中,将蛋白质结构作为查询来使用一组模板来检查可能的活性位点。
本文通过实验表明,机器学习算法可有效地提高两种分析的相似度/偏差测量值。