Working Group on Cardiovascular Magnetic Resonance Imaging, Medical University Berlin, Charité Campus Buch, Experimental and Clinical Research Center, and HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany.
Eur J Cardiothorac Surg. 2011 Sep;40(3):736-42. doi: 10.1016/j.ejcts.2010.12.040. Epub 2011 Feb 20.
The hemodynamics in proximity to stented aortic bioprostheses still differ from that under physiological conditions. This may prevent desired cardiac remodeling and promote aortic diseases. Further improvements in prosthetic technology require an accurate survey of the flow conditions on the prosthetic level and in the ascending aorta. Cardiovascular magnetic resonance (CMR) may have the potential to provide more information by determining the prosthetic orifice area and visualizing the intravascular flow dynamics. We tested the feasibility to better characterize the hemodynamics of various stented bioprostheses in a pulsatile flow phantom by using CMR.
The custom-made model consisting of a commercially available pump generating pulsatile flow, a tube system filled with a glycerin-water mixture, and a handcrafted bulbar-shaped cylinder holding the bioprostheses and simulating the aortic root, was located in a clinical 1.5T CMR system. In this study, 10 stented aortic bioprostheses were investigated (Perimount® 21, 23; Mitroflow® 19, 25; Hancock® 21, 23, 25; Mosaic® 21; Epic Supra® 21, 23). The prosthetic orifice area was visualized using steady-state free-precession cine imaging (spatial/temporal resolution 1.3×1.3×5 mm³/29 ms), quantified by manual planimetry and compared with published transthoracic echocardiographic data. Time-resolved three-dimensional phase-contrast flow mapping (1.8×1.8×3 mm³/45 ms) was applied to analyze the transprosthetic flow pattern.
Visualization of the prosthetic orifice area and the transprosthetic flow pattern was feasible in all prostheses. All orifice areas obtained by CMR in vitro were within one standard deviation of the mean of the published reference values obtained by echocardiography in vivo. Turbulent flow with vortex formation occurred both in proximity to the prosthesis and on the 'ascending aortic' level. Larger prosthetic sizes led to decreased flow velocities, but not mandatorily to less turbulences.
CMR allowed for a detailed interrogation of the fluid dynamics of various heart valve bioprostheses in a pulsatile flow model. It is an attractive tool to define proprietary reference values of the orifice area under standardized conditions and provides novel information regarding the flow pattern in proximity to the prosthesis.
在植入主动脉生物瓣附近的血液动力学仍然不同于生理条件下的血液动力学。这可能会阻止心脏的理想重塑并促进主动脉疾病。进一步改进假体技术需要准确测量假体水平和升主动脉内的流动条件。心血管磁共振(CMR)通过确定假体瓣口面积并可视化血管内流动动力学,可能具有提供更多信息的潜力。我们通过使用 CMR 测试了在脉动流模型中更好地描述各种植入式生物瓣血液动力学的可行性。
该定制模型由一个商用泵产生脉动流、一个充满甘油 - 水混合物的管系统和一个手工制作的球茎状圆柱体组成,该圆柱体容纳生物瓣并模拟主动脉根部,位于临床 1.5T CMR 系统中。在这项研究中,研究了 10 个植入式主动脉生物瓣(Perimount®21、23;Mitroflow®19、25;Hancock®21、23、25;Mosaic®21;Epic Supra®21、23)。使用稳态自由进动电影成像可视化假体瓣口面积(空间/时间分辨率 1.3×1.3×5mm³/29ms),通过手动描绘进行定量,并与发表的经胸超声心动图数据进行比较。应用时间分辨三维相位对比流量映射(1.8×1.8×3mm³/45ms)分析跨瓣流量模式。
在所有假体中都可以实现假体瓣口面积和跨瓣流量模式的可视化。CMR 体外获得的所有瓣口面积都在体内经胸超声心动图获得的发表参考值平均值的一个标准差范围内。在假体附近和“升主动脉”水平都发生了湍流形成的涡流。较大的假体尺寸会导致流速降低,但不一定会导致湍流减少。
CMR 允许在脉动流模型中详细检查各种心脏瓣膜生物瓣的流体动力学。它是一种有吸引力的工具,可以在标准化条件下定义瓣口面积的专有参考值,并提供有关假体附近流动模式的新信息。