School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea.
ACS Appl Mater Interfaces. 2011 Mar;3(3):828-35. doi: 10.1021/am101169k. Epub 2011 Feb 23.
We report a novel architecture of SnO(2) nanorod-planted graphite particles for an efficient Li ion storage material that can be prepared by a simple catalyst-assisted hydrothermal process. Rectangular-shaped SnO(2) nanorods are highly crystalline with a tetragonal rutile phase and distributed uniformly over the surface of micrometer-sized graphite particles. In addition, the size dimensions of grown SnO(2) nanorods can be controlled by varying the synthesis conditions. The diameter can be engineered to a sub-100 nm range, and the length can be controlled to up to several hundred nanometers. Significantly, the SnO(2) nanorod-planted graphite demonstrates an initial Li ion storage capacity of about 1010 mAh g(-1) during the first cycle. Also, these SnO(2)-graphite composites show high Coulombic efficiency and cycle stability in comparison with SnO(2) nanomaterials that are not combined with graphite. The enhanced electrochemical properties of SnO(2) nanorod-planted graphite, as compared with bare SnO(2) materials, inspire better design of composite materials with effective nanostructural configurations for advanced electrodes in lithium ion batteries.
我们报告了一种新型的 SnO(2)纳米棒种植石墨颗粒的结构,可作为高效的锂离子存储材料,通过简单的催化剂辅助水热工艺制备。矩形 SnO(2)纳米棒具有高度结晶的四方金红石相,均匀分布在微米级石墨颗粒的表面上。此外,通过改变合成条件可以控制生长的 SnO(2)纳米棒的尺寸。直径可以工程化到亚 100nm 范围内,长度可以控制到几百纳米。重要的是,SnO(2)纳米棒种植石墨在首次循环中表现出约 1010 mAh g(-1)的初始锂离子存储容量。此外,与未与石墨结合的 SnO(2)纳米材料相比,这些 SnO(2)-石墨复合材料具有更高的库仑效率和循环稳定性。与裸 SnO(2)材料相比,SnO(2)纳米棒种植石墨的电化学性能得到了增强,这激发了更好的复合材料设计,以实现锂离子电池中先进电极的有效纳米结构配置。