Suppr超能文献

管腔液流沿肾单位调节一氧化氮和超氧阴离子。

Luminal flow regulates NO and O2(-) along the nephron.

机构信息

Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.

出版信息

Am J Physiol Renal Physiol. 2011 May;300(5):F1047-53. doi: 10.1152/ajprenal.00724.2010. Epub 2011 Feb 23.

Abstract

Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O(2)(-)) play important roles in various processes within the kidney. Reductions in NO and increases in O(2)(-) lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O(2)(-) production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O(2)(-) in this segment. In the thick ascending limb, flow-stimulated NO and O(2)(-) formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O(2)(-) production by NADPH oxidase in this segment. The interaction between flow-induced NO and O(2)(-) is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O(2)(-) production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O(2)(-) production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions.

摘要

尿流并非恒定不变,而是高度可变的,这会改变机械力(剪切力、拉伸和压力)对肾单位上皮细胞的作用以及溶质的输送。一氧化氮(NO)和超氧阴离子(O(2)(-))在肾脏的各种过程中发挥重要作用。NO 的减少和 O(2)(-)的增加导致异常的 NaCl 和水吸收以及高血压。在过去的几年中,管腔流已被证明是调节整个肾单位中 NO 和 O(2)(-)产生的因素。管腔流的增加增强了近端小管中的液体、Na 和碳酸氢盐的转运。然而,我们没有直接报道涉及该节段中 NO 和 O(2)(-)的流量调节。在升支粗段中,已经广泛研究了流量刺激的 NO 和 O(2)(-)形成。管腔流通过诱导型一氧化氮合酶 3 刺激 NO 产生,并将其易位到髓质升支粗段的顶端膜。这些作用是由流动诱导的剪切力介导的。相比之下,流动诱导的拉伸和 NaCl 输送刺激该节段中的 NADPH 氧化酶产生 O(2)(-)。流量诱导的 NO 和 O(2)(-)之间的相互作用很复杂,涉及到不止一种简单的清除另一种物质。流量诱导的 NO 通过 cGMP 依赖性蛋白激酶在升支粗段中防止流量增加 O(2)(-)的产生。在致密斑细胞中,剪切力增加 NO 的产生,这需要原纤毛完整。管腔流在远曲小管中对 NO 和 O(2)(-)产生的作用尚不清楚。在培养的内髓集合管细胞中,剪切力增强了亚硝酸盐的积累,这是衡量 NO 产生的一种方法。尽管在过去的几年中在这个主题上取得了很大的进展,但仍有许多未解决的问题。

相似文献

1
Luminal flow regulates NO and O2(-) along the nephron.管腔液流沿肾单位调节一氧化氮和超氧阴离子。
Am J Physiol Renal Physiol. 2011 May;300(5):F1047-53. doi: 10.1152/ajprenal.00724.2010. Epub 2011 Feb 23.
2
Shear stress increases nitric oxide production in thick ascending limbs.切应力增加厚升支中的一氧化氮生成。
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1185-92. doi: 10.1152/ajprenal.00112.2010. Epub 2010 Aug 18.
4
Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase.致密斑去极化通过NAD(P)H氧化酶诱导超氧化物生成。
Am J Physiol Renal Physiol. 2007 Jun;292(6):F1867-72. doi: 10.1152/ajprenal.00515.2006. Epub 2007 Mar 6.
8
Intracellular pH regulates superoxide production by the macula densa.细胞内pH值调节致密斑产生超氧化物的过程。
Am J Physiol Renal Physiol. 2008 Sep;295(3):F851-6. doi: 10.1152/ajprenal.90204.2008. Epub 2008 Jul 30.

引用本文的文献

8
Tubule-vascular feedback in renal autoregulation.肾脏自身调节中的肾小管-血管反馈
Am J Physiol Renal Physiol. 2019 Jun 1;316(6):F1218-F1226. doi: 10.1152/ajprenal.00381.2018. Epub 2019 Mar 6.
10

本文引用的文献

1
ATP mediates flow-induced NO production in thick ascending limbs.三磷酸腺苷(ATP)介导髓袢升支粗段中血流诱导的一氧化氮(NO)生成。
Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F194-200. doi: 10.1152/ajprenal.00504.2011. Epub 2012 Apr 11.
2
Flow regulation of collecting duct endothelin-1 production.收集管内皮素-1 产生的流量调节。
Am J Physiol Renal Physiol. 2011 Mar;300(3):F650-6. doi: 10.1152/ajprenal.00530.2010. Epub 2010 Dec 22.
3
Connecting tubule glomerular feedback antagonizes tubuloglomerular feedback in vivo.连接小管-肾小球反馈在体内拮抗管球反馈。
Am J Physiol Renal Physiol. 2010 Dec;299(6):F1374-8. doi: 10.1152/ajprenal.00403.2010. Epub 2010 Sep 8.
4
Shear stress increases nitric oxide production in thick ascending limbs.切应力增加厚升支中的一氧化氮生成。
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1185-92. doi: 10.1152/ajprenal.00112.2010. Epub 2010 Aug 18.
5
PKC-alpha mediates flow-stimulated superoxide production in thick ascending limbs.PKC-α 介导厚升支中流动刺激的超氧化物产生。
Am J Physiol Renal Physiol. 2010 Apr;298(4):F885-91. doi: 10.1152/ajprenal.00543.2009. Epub 2010 Jan 6.
10
Intracellular pH regulates superoxide production by the macula densa.细胞内pH值调节致密斑产生超氧化物的过程。
Am J Physiol Renal Physiol. 2008 Sep;295(3):F851-6. doi: 10.1152/ajprenal.90204.2008. Epub 2008 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验