Suppr超能文献

SNOMED CT中表面相似概念的逻辑建模差异。

Dissimilarities in the Logical Modeling of Apparently Similar Concepts in SNOMED CT.

作者信息

Agrawal Ankur, Elhanan Gai, Halper Michael

机构信息

New Jersey Institute of Technology, Newark, NJ.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:212-6.

Abstract

Concepts whose terms are of a similar word structure are expected to have similar logical representations. Anecdotal examples from SNOMED CT indicate that this may not always be the case. An investigation into the extent of inconsistent modeling in SNOMED CT hierarchies is carried out. A lexical methodology is used to identify sets of similar concepts. It is applied to one of the most attribute-rich hierarchies, Procedure, from which a random sample of 60 sets is derived. These sets are examined in regard to hierarchical, definitional, attribute, attribute/value, and role-group aspects. Thirty percent of the sample sets were found to have at least one type of modeling inconsistency. Their presence may interfere with the performance of terminology-driven applications. With the use of SNOMED expanding, such inconsistencies may eventually affect clinical care. Due to this, external auditing should be encouraged to identify such issues and complement IHTSDO's efforts.

摘要

那些术语具有相似词结构的概念,预期会有相似的逻辑表示。来自SNOMED CT的轶事性例子表明情况可能并非总是如此。对SNOMED CT层次结构中不一致建模的程度进行了调查。使用一种词汇方法来识别相似概念集。该方法应用于最具属性的层次结构之一“Procedure”,从中抽取了60组的随机样本。从层次、定义、属性、属性/值和角色组等方面对这些集合进行了检查。发现30%的样本集至少存在一种类型的建模不一致。它们的存在可能会干扰术语驱动应用程序的性能。随着SNOMED的不断扩展,这种不一致最终可能会影响临床护理。因此,应鼓励外部审核来识别此类问题,并补充国际卫生术语标准发展组织(IHTSDO)的工作。

相似文献

2
Evaluating lexical similarity and modeling discrepancies in the procedure hierarchy of SNOMED CT.
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):88. doi: 10.1186/s12911-018-0673-z.
3
A tribal abstraction network for SNOMED CT target hierarchies without attribute relationships.
J Am Med Inform Assoc. 2015 May;22(3):628-39. doi: 10.1136/amiajnl-2014-003173. Epub 2014 Oct 20.
4
Detecting modeling inconsistencies in SNOMED CT using a machine learning technique.
Methods. 2020 Jul 1;179:111-118. doi: 10.1016/j.ymeth.2020.05.019. Epub 2020 May 20.
5
Targeting stopwords for quality assurance of SNOMED-CT.
Int J Med Inform. 2022 Nov;167:104870. doi: 10.1016/j.ijmedinf.2022.104870. Epub 2022 Sep 17.
6
Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.
J Biomed Inform. 2018 Feb;78:177-184. doi: 10.1016/j.jbi.2017.12.010. Epub 2017 Dec 20.
7
Contrasting lexical similarity and formal definitions in SNOMED CT: consistency and implications.
J Biomed Inform. 2014 Feb;47:192-8. doi: 10.1016/j.jbi.2013.11.003. Epub 2013 Nov 15.
9
An alternative database approach for management of SNOMED CT and improved patient data queries.
J Biomed Inform. 2015 Oct;57:350-7. doi: 10.1016/j.jbi.2015.08.016. Epub 2015 Aug 21.
10
Validating UMLS Semantic Type Assignments Using SNOMED CT Semantic Tags.
Methods Inf Med. 2018 Feb;57(1):43-53. doi: 10.3414/ME17-01-0120. Epub 2018 Apr 5.

引用本文的文献

1
Evaluating lexical similarity and modeling discrepancies in the procedure hierarchy of SNOMED CT.
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):88. doi: 10.1186/s12911-018-0673-z.
2
Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies.
J Am Med Inform Assoc. 2015 May;22(3):507-18. doi: 10.1136/amiajnl-2014-003151. Epub 2014 Oct 21.
3
Identifying inconsistencies in SNOMED CT problem lists using structural indicators.
AMIA Annu Symp Proc. 2013 Nov 16;2013:17-26. eCollection 2013.
4
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
J Biomed Inform. 2012 Feb;45(1):1-14. doi: 10.1016/j.jbi.2011.08.016. Epub 2011 Sep 1.
5
A survey of SNOMED CT direct users, 2010: impressions and preferences regarding content and quality.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i36-44. doi: 10.1136/amiajnl-2011-000341. Epub 2011 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验