Suppr超能文献

使用基于主题的子分类法对大型SNOMED CT层次结构进行可扩展的质量保证。

Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies.

作者信息

Ochs Christopher, Geller James, Perl Yehoshua, Chen Yan, Xu Junchuan, Min Hua, Case James T, Wei Zhi

机构信息

Computer Science Department, New Jersey Institute of Technology, Newark, New Jersey, USA.

Computer Information Systems Department, BMCC, CUNY, New York, New York, USA.

出版信息

J Am Med Inform Assoc. 2015 May;22(3):507-18. doi: 10.1136/amiajnl-2014-003151. Epub 2014 Oct 21.

Abstract

OBJECTIVE

Standards terminologies may be large and complex, making their quality assurance challenging. Some terminology quality assurance (TQA) methodologies are based on abstraction networks (AbNs), compact terminology summaries. We have tested AbNs and the performance of related TQA methodologies on small terminology hierarchies. However, some standards terminologies, for example, SNOMED, are composed of very large hierarchies. Scaling AbN TQA techniques to such hierarchies poses a significant challenge. We present a scalable subject-based approach for AbN TQA.

METHODS

An innovative technique is presented for scaling TQA by creating a new kind of subject-based AbN called a subtaxonomy for large hierarchies. New hypotheses about concentrations of erroneous concepts within the AbN are introduced to guide scalable TQA.

RESULTS

We test the TQA methodology for a subject-based subtaxonomy for the Bleeding subhierarchy in SNOMED's large Clinical finding hierarchy. To test the error concentration hypotheses, three domain experts reviewed a sample of 300 concepts. A consensus-based evaluation identified 87 erroneous concepts. The subtaxonomy-based TQA methodology was shown to uncover statistically significantly more erroneous concepts when compared to a control sample.

DISCUSSION

The scalability of TQA methodologies is a challenge for large standards systems like SNOMED. We demonstrated innovative subject-based TQA techniques by identifying groups of concepts with a higher likelihood of having errors within the subtaxonomy. Scalability is achieved by reviewing a large hierarchy by subject.

CONCLUSIONS

An innovative methodology for scaling the derivation of AbNs and a TQA methodology was shown to perform successfully for the largest hierarchy of SNOMED.

摘要

目的

标准术语可能庞大而复杂,这使得其质量保证颇具挑战性。一些术语质量保证(TQA)方法基于抽象网络(AbN),即紧凑的术语摘要。我们已经在小型术语层次结构上测试了AbN及相关TQA方法的性能。然而,一些标准术语,例如SNOMED,是由非常大的层次结构组成的。将AbN TQA技术扩展到如此庞大的层次结构面临重大挑战。我们提出了一种可扩展的基于主题的AbN TQA方法。

方法

提出了一种创新技术,通过为大型层次结构创建一种新型的基于主题的AbN(称为子分类法)来扩展TQA。引入了关于AbN中错误概念集中情况的新假设,以指导可扩展的TQA。

结果

我们针对SNOMED大型临床发现层次结构中的出血子层次结构,测试了基于主题的子分类法的TQA方法。为了测试错误集中假设,三位领域专家审查了300个概念的样本。基于共识的评估确定了87个错误概念。与对照样本相比,基于子分类法的TQA方法在统计学上能发现更多错误概念。

讨论

TQA方法的可扩展性对于像SNOMED这样的大型标准系统来说是一项挑战。我们通过识别子分类法中更有可能存在错误的概念组,展示了创新的基于主题的TQA技术。通过按主题审查大型层次结构实现了可扩展性。

结论

一种用于扩展AbN推导的创新方法和一种TQA方法在SNOMED最大的层次结构中成功运行。

相似文献

1
Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies.
J Am Med Inform Assoc. 2015 May;22(3):507-18. doi: 10.1136/amiajnl-2014-003151. Epub 2014 Oct 21.
2
Scalability of abstraction-network-based quality assurance to large SNOMED hierarchies.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1071-80. eCollection 2013.
3
A tribal abstraction network for SNOMED CT target hierarchies without attribute relationships.
J Am Med Inform Assoc. 2015 May;22(3):628-39. doi: 10.1136/amiajnl-2014-003173. Epub 2014 Oct 20.
4
Missing lateral relationships in top-level concepts of an ontology.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):305. doi: 10.1186/s12911-020-01319-3.
5
Quality Assurance of UMLS Semantic Type Assignments Using SNOMED CT Hierarchies.
Methods Inf Med. 2016;55(2):158-65. doi: 10.3414/ME14-01-0104. Epub 2015 Apr 30.
6
Structural methodologies for auditing SNOMED.
J Biomed Inform. 2007 Oct;40(5):561-81. doi: 10.1016/j.jbi.2006.12.003. Epub 2006 Dec 24.
7
9
Auditing complex concepts in overlapping subsets of SNOMED.
AMIA Annu Symp Proc. 2008 Nov 6;2008:273-7.
10
A comparative analysis of the density of the SNOMED CT conceptual content for semantic harmonization.
Artif Intell Med. 2015 May;64(1):29-40. doi: 10.1016/j.artmed.2015.03.002. Epub 2015 Apr 2.

引用本文的文献

1
An Automated Approach for Identifying Erroneous IS-A Relations in SNOMED CT.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:545-554. eCollection 2024.
3
The standard problem.
J Am Med Inform Assoc. 2023 Nov 17;30(12):2086-2097. doi: 10.1093/jamia/ocad176.
4
A deep learning approach to identify missing is-a relations in SNOMED CT.
J Am Med Inform Assoc. 2023 Feb 16;30(3):475-484. doi: 10.1093/jamia/ocac248.
6
Visual comprehension and orientation into the COVID-19 CIDO ontology.
J Biomed Inform. 2021 Aug;120:103861. doi: 10.1016/j.jbi.2021.103861. Epub 2021 Jul 2.
8
Outlier concepts auditing methodology for a large family of biomedical ontologies.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):296. doi: 10.1186/s12911-020-01311-x.
9
Missing lateral relationships in top-level concepts of an ontology.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):305. doi: 10.1186/s12911-020-01319-3.
10
Detecting missing IS-A relations in the NCI Thesaurus using an enhanced hybrid approach.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):273. doi: 10.1186/s12911-020-01289-6.

本文引用的文献

1
Scalability of abstraction-network-based quality assurance to large SNOMED hierarchies.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1071-80. eCollection 2013.
2
Crowdsourcing the verification of relationships in biomedical ontologies.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1020-9. eCollection 2013.
3
Identifying inconsistencies in SNOMED CT problem lists using structural indicators.
AMIA Annu Symp Proc. 2013 Nov 16;2013:17-26. eCollection 2013.
6
A study of terminology auditors' performance for UMLS semantic type assignments.
J Biomed Inform. 2012 Dec;45(6):1042-8. doi: 10.1016/j.jbi.2012.05.006. Epub 2012 Jun 9.
7
Lexically suggest, logically define: quality assurance of the use of qualifiers and expected results of post-coordination in SNOMED CT.
J Biomed Inform. 2012 Apr;45(2):199-209. doi: 10.1016/j.jbi.2011.10.002. Epub 2011 Oct 14.
8
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
J Biomed Inform. 2012 Feb;45(1):1-14. doi: 10.1016/j.jbi.2011.08.016. Epub 2011 Sep 1.
9
Abstraction of complex concepts with a refined partial-area taxonomy of SNOMED.
J Biomed Inform. 2012 Feb;45(1):15-29. doi: 10.1016/j.jbi.2011.08.013. Epub 2011 Aug 25.
10
A survey of SNOMED CT direct users, 2010: impressions and preferences regarding content and quality.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i36-44. doi: 10.1136/amiajnl-2011-000341. Epub 2011 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验