Suppr超能文献

子语言语义模式的自动获取:迈向临床叙述的词义消歧

Automatic acquisition of sublanguage semantic schema: towards the word sense disambiguation of clinical narratives.

作者信息

Patterson Olga, Igo Sean, Hurdle John F

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:612-6.

Abstract

Natural language processing of clinical notes is challenging due to a high degree of semantic ambiguity. Previous research has uncovered ways to improve disambiguation accuracy using manually created rules of semantic sentence structure. However, applying a natural language processing system in a new clinical domain using this method is very labor intensive. This paper presents an automatic method of developing such disambiguation rules for a wide range of clinical domains. Our rules are based on the co-occurrence patterns of semantic types of terms unambiguously mapped to UMLS concepts by MetaMap. These patterns are combined into a sublanguage semantic schema that can be used by an existing natural language processing system such as MetaMap. The differences of co-occurrence patterns across clinical notes of different domains are presented here as evidence of clinical sublanguages.

摘要

由于语义歧义程度高,临床记录的自然语言处理具有挑战性。先前的研究已经发现了一些方法,可使用人工创建的语义句子结构规则来提高消歧准确性。然而,使用这种方法在新的临床领域应用自然语言处理系统非常耗费人力。本文提出了一种针对广泛临床领域开发此类消歧规则的自动方法。我们的规则基于通过MetaMap明确映射到UMLS概念的术语语义类型的共现模式。这些模式被组合成一个子语言语义模式,可被诸如MetaMap之类的现有自然语言处理系统使用。不同领域临床记录中共现模式的差异在此作为临床子语言的证据呈现。

相似文献

2
Collocation analysis for UMLS knowledge-based word sense disambiguation.
BMC Bioinformatics. 2011 Jun 9;12 Suppl 3(Suppl 3):S4. doi: 10.1186/1471-2105-12-S3-S4.
3
Mapping terms to UMLS concepts of the same semantic type.
AMIA Annu Symp Proc. 2007 Oct 11:1136.
5
Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
J Am Med Inform Assoc. 2020 Oct 1;27(10):1538-1546. doi: 10.1093/jamia/ocaa136.
7
Word sense disambiguation via semantic type classification.
AMIA Annu Symp Proc. 2008 Nov 6;2008:177-81.
8
Co-occurrence graphs for word sense disambiguation in the biomedical domain.
Artif Intell Med. 2018 May;87:9-19. doi: 10.1016/j.artmed.2018.03.002. Epub 2018 Mar 21.
9
Towards comprehensive syntactic and semantic annotations of the clinical narrative.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):922-30. doi: 10.1136/amiajnl-2012-001317. Epub 2013 Jan 25.
10
Knowledge-based biomedical word sense disambiguation: an evaluation and application to clinical document classification.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):882-6. doi: 10.1136/amiajnl-2012-001350. Epub 2012 Oct 16.

引用本文的文献

1
Epidemiology of nontuberculous mycobacterial infections in the U.S. Veterans Health Administration.
PLoS One. 2018 Jun 13;13(6):e0197976. doi: 10.1371/journal.pone.0197976. eCollection 2018.
2
Document Sublanguage Clustering to Detect Medical Specialty in Cross-institutional Clinical Texts.
Proc ACM Int Workshop Data Text Min Biomed Inform. 2013 Oct-Nov;2013:9-12. doi: 10.1145/2512089.2512101.
3
Detection of sentence boundaries and abbreviations in clinical narratives.
BMC Med Inform Decis Mak. 2015;15 Suppl 2(Suppl 2):S4. doi: 10.1186/1472-6947-15-S2-S4. Epub 2015 Jun 15.
4
TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes.
AMIA Annu Symp Proc. 2014 Nov 14;2014:534-43. eCollection 2014.
5
Applying MetaMap to Medline for identifying novel associations in a large clinical dataset: a feasibility analysis.
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):925-37. doi: 10.1136/amiajnl-2014-002767. Epub 2014 Jun 13.
6

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验