State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China.
Chem Soc Rev. 2011 May;40(5):2909-21. doi: 10.1039/c0cs00124d. Epub 2011 Feb 24.
Controlling the interfacial chemical and physical properties, and thus modulating the behaviours of cells and biomolecules on material surfaces, form an important foundation for the development of high-performance biomaterials and devices. Biological systems in nature exhibit unique features in this aspect. The first one is that the superior properties of natural biomaterials are normally not determined by their bulk properties, but more related to the multi-scale micro- and nanostructures on the surface; the second is that biological systems usually utilize highly specific weak interactions (e.g. hydrogen bonding interaction, hydrophobic interaction, etc.) to solve the problems of biomolecule interactions; the third is that the biomolecules in nature are often chiral molecules and show high preference for one specific enantiomorphous configuration, suggesting a distinctive chiral recognition mechanism in biological systems. These features bring much inspiration to design novel biointerface materials with special functionalities, e.g. structural biointerface materials, smart biointerface materials and chiral biointerface materials. The purpose of this critical review is to give a brief introduction of recent advances in these aspects (90 references).
控制界面的化学和物理性质,从而调节细胞和生物分子在材料表面的行为,为高性能生物材料和器件的发展奠定了重要基础。自然界中的生物系统在这方面表现出独特的特征。首先,天然生物材料的优异性能通常不是由其体相性质决定的,而是更多地与表面的多尺度微观和纳米结构有关;其次,生物系统通常利用高度特异性的弱相互作用(如氢键相互作用、疏水相互作用等)来解决生物分子相互作用的问题;第三,自然界中的生物分子通常是手性分子,对一种特定的对映异构体构型表现出高度的偏好,这表明生物系统中存在独特的手性识别机制。这些特征为设计具有特殊功能的新型生物界面材料提供了很多启示,例如结构型生物界面材料、智能型生物界面材料和手型生物界面材料。本文的目的是简要介绍这些方面的最新进展(90 篇参考文献)。