Meker Sigalit, Halevi Oded, Chin Hokyun, Sut Tun Naw, Jackman Joshua A, Tan Ee-Lin, Potroz Michael G, Cho Nam-Joon
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Membranes (Basel). 2022 Mar 25;12(4):361. doi: 10.3390/membranes12040361.
Functional biointerfaces hold broad significance for designing cell-responsive medical implants and sensor devices. Solid-supported phospholipid bilayers are a promising class of biological materials to build bioinspired thin-film coatings, as they can facilitate interactions with cell membranes. However, it remains challenging to fabricate lipid bilayers on medically relevant materials such as titanium oxide surfaces. There are also limitations in existing bilayer printing capabilities since most approaches are restricted to either deposition alone or to fixed microarray patterning. By combining advances in lipid surface chemistry and on-demand inkjet printing, we demonstrate the direct deposition and patterning of covalently tethered lipid bilayer membranes on titanium oxide surfaces, in ambient conditions and without any surface pretreatment process. The deposition conditions were evaluated by quartz crystal microbalance-dissipation (QCM-D) measurements, with corresponding resonance frequency (Δf) and energy dissipation (ΔD) shifts of around −25 Hz and <1 × 10−6, respectively, that indicated successful bilayer printing. The resulting printed phospholipid bilayers are stable in air and do not collapse following dehydration; through rehydration, the bilayers regain their functional properties, such as lateral mobility (>1 µm2/s diffusion coefficient), according to fluorescence recovery after photobleaching (FRAP) measurements. By taking advantage of the lipid bilayer patterned architectures and the unique features of titanium oxide’s photoactivity, we further show how patterned cell culture arrays can be fabricated. Looking forward, this work presents new capabilities to achieve stable lipid bilayer patterns that can potentially be translated into implantable biomedical devices.
功能性生物界面对于设计细胞响应性医疗植入物和传感器设备具有广泛的意义。固体支撑的磷脂双层是一类很有前景的生物材料,可用于构建受生物启发的薄膜涂层,因为它们能够促进与细胞膜的相互作用。然而,在诸如氧化钛表面等医学相关材料上制备脂质双层仍然具有挑战性。现有的双层打印能力也存在局限性,因为大多数方法要么仅限于单独沉积,要么仅限于固定的微阵列图案化。通过结合脂质表面化学和按需喷墨打印技术的进展,我们展示了在环境条件下且无需任何表面预处理过程的情况下,在氧化钛表面直接沉积和图案化共价连接的脂质双层膜。通过石英晶体微天平耗散(QCM-D)测量对沉积条件进行了评估,相应的共振频率(Δf)和能量耗散(ΔD)变化分别约为-25 Hz和<1×10-6,这表明双层打印成功。所得的打印磷脂双层在空气中稳定,脱水后不会塌陷;根据光漂白后荧光恢复(FRAP)测量,通过再水化,双层恢复其功能特性,如横向流动性(扩散系数>1 µm2/s)。通过利用脂质双层图案化结构和氧化钛光活性的独特特性,我们进一步展示了如何制造图案化细胞培养阵列。展望未来,这项工作展示了实现稳定脂质双层图案的新能力,这些图案有可能转化为可植入的生物医学设备。