Suppr超能文献

提高弓形虫内源性表位标记和基因缺失技术。

Improved techniques for endogenous epitope tagging and gene deletion in Toxoplasma gondii.

机构信息

Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

J Microbiol Methods. 2011 May;85(2):103-13. doi: 10.1016/j.mimet.2011.02.001. Epub 2011 Feb 23.

Abstract

Toxoplasma gondii is an excellent model organism for studies on the biology of the Apicomplexa due to its ease of in vitro cultivation and genetic manipulation. Large-scale reverse genetic studies in T. gondii have, however, been difficult due to the low frequency of homologous recombination. Efforts to ensure homologous recombination have necessitated engineering long flanking regions in the targeting construct. This requirement makes it difficult to engineer chromosomally targeted epitope tags or gene knock out constructs only by restriction enzyme mediated cloning steps. To address this issue we employed multisite Gateway® recombination techniques to generate chromosomal gene manipulation targeting constructs. Incorporation of 1.5 to 2.0 kb flanking homologous sequences in PCR generated targeting constructs resulted in 90% homologous recombination events in wild type T. gondii (RH strain) as determined by epitope tagging and target gene deletion experiments. Furthermore, we report that split marker constructs were equally efficient for targeted gene disruptions using the T. gondii UPRT gene locus as a test case. The methods described in this paper represent an improved strategy for efficient epitope tagging and gene disruptions in T. gondii.

摘要

刚地弓形虫由于其易于体外培养和遗传操作,是研究顶复门生物学的优秀模式生物。然而,由于同源重组频率低,大规模的刚地弓形虫反向遗传学研究一直很困难。为了确保同源重组,有必要在靶向构建体中工程化长的侧翼区。这种需求使得通过限制酶介导的克隆步骤仅构建染色体靶向表位标签或基因敲除构建体变得困难。为了解决这个问题,我们采用多酶切位点 Gateway®重组技术来生成染色体基因操作靶向构建体。在 PCR 生成的靶向构建体中加入 1.5 到 2.0 kb 的侧翼同源序列,通过表位标记和靶基因缺失实验,在野生型刚地弓形虫(RH 株)中导致 90%的同源重组事件。此外,我们报告说,在使用刚地弓形虫 UPRT 基因座作为测试案例进行靶向基因缺失时,分裂标记构建体同样有效。本文描述的方法代表了在刚地弓形虫中进行有效表位标记和基因缺失的改进策略。

相似文献

1
Improved techniques for endogenous epitope tagging and gene deletion in Toxoplasma gondii.
J Microbiol Methods. 2011 May;85(2):103-13. doi: 10.1016/j.mimet.2011.02.001. Epub 2011 Feb 23.
3
Genetic manipulation of the Toxoplasma gondii genome by fosmid recombineering.
mBio. 2014 Dec 2;5(6):e02021. doi: 10.1128/mBio.02021-14.
4
Gene knock-outs and allelic replacements in Toxoplasma gondii: HXGPRT as a selectable marker for hit-and-run mutagenesis.
Mol Biochem Parasitol. 1998 Mar 15;91(2):295-305. doi: 10.1016/s0166-6851(97)00210-7.
5
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80.
Eukaryot Cell. 2009 Apr;8(4):530-9. doi: 10.1128/EC.00358-08. Epub 2009 Feb 13.
7
Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
mBio. 2014 May 13;5(3):e01114-14. doi: 10.1128/mBio.01114-14.
8
Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis.
Methods. 1997 Oct;13(2):112-22. doi: 10.1006/meth.1997.0504.
9
Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9.
PLoS One. 2014 Jun 27;9(6):e100450. doi: 10.1371/journal.pone.0100450. eCollection 2014.

引用本文的文献

1
From O/GABA-AT, GABA, and T-263 Mutant to Conception of .
iScience. 2023 Nov 16;27(1):108477. doi: 10.1016/j.isci.2023.108477. eCollection 2024 Jan 19.
2
Previously Unidentified Histone H1-Like Protein Is Involved in Cell Division and Ribosome Biosynthesis in Toxoplasma gondii.
mSphere. 2022 Dec 21;7(6):e0040322. doi: 10.1128/msphere.00403-22. Epub 2022 Dec 5.
3
Toxoplasma gondii AP2XII-2 Contributes to Proper Progression through S-Phase of the Cell Cycle.
mSphere. 2020 Sep 16;5(5):e00542-20. doi: 10.1128/mSphere.00542-20.
4
AP2IX-4 Regulates Gene Expression during Bradyzoite Development.
mSphere. 2017 Mar 15;2(2). doi: 10.1128/mSphere.00054-17. eCollection 2017 Mar-Apr.
6
A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii.
Nucleic Acids Res. 2015 May 19;43(9):4661-75. doi: 10.1093/nar/gkv311. Epub 2015 Apr 13.
7
The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation.
Mol Microbiol. 2013 Feb;87(3):641-55. doi: 10.1111/mmi.12121. Epub 2012 Dec 26.
8
The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18.
PLoS Pathog. 2012;8(11):e1002992. doi: 10.1371/journal.ppat.1002992. Epub 2012 Nov 8.

本文引用的文献

1
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80.
Eukaryot Cell. 2009 Apr;8(4):530-9. doi: 10.1128/EC.00358-08. Epub 2009 Feb 13.
2
Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.
Eukaryot Cell. 2009 Apr;8(4):520-9. doi: 10.1128/EC.00357-08. Epub 2009 Feb 13.
4
The prodomain of Toxoplasma gondii GPI-anchored subtilase TgSUB1 mediates its targeting to micronemes.
Traffic. 2008 Sep;9(9):1485-96. doi: 10.1111/j.1600-0854.2008.00774.x. Epub 2008 Jun 2.
5
ToxoDB: an integrated Toxoplasma gondii database resource.
Nucleic Acids Res. 2008 Jan;36(Database issue):D553-6. doi: 10.1093/nar/gkm981. Epub 2007 Nov 14.
7
Split marker transformation increases homologous integration frequency in Cryptococcus neoformans.
Fungal Genet Biol. 2006 Mar;43(3):200-12. doi: 10.1016/j.fgb.2005.09.007. Epub 2006 Feb 23.
8
Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii.
Mol Biochem Parasitol. 2006 Apr;146(2):242-50. doi: 10.1016/j.molbiopara.2006.01.001. Epub 2006 Jan 17.
9
Ku: a multifunctional protein involved in telomere maintenance.
DNA Repair (Amst). 2005 Nov 21;4(11):1215-26. doi: 10.1016/j.dnarep.2005.04.021. Epub 2005 Jun 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验