Suppr超能文献

在缺乏非同源末端连接的弓形虫菌株中进行高效基因替换。

Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.

作者信息

Fox Barbara A, Ristuccia Jessica G, Gigley Jason P, Bzik David J

机构信息

Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA.

出版信息

Eukaryot Cell. 2009 Apr;8(4):520-9. doi: 10.1128/EC.00357-08. Epub 2009 Feb 13.

Abstract

A high frequency of nonhomologous recombination has hampered gene targeting approaches in the model apicomplexan parasite Toxoplasma gondii. To address whether the nonhomologous end-joining (NHEJ) DNA repair pathway could be disrupted in this obligate intracellular parasite, putative KU proteins were identified and a predicted KU80 gene was deleted. The efficiency of gene targeting via double-crossover homologous recombination at several genetic loci was found to be greater than 97% of the total transformants in KU80 knockouts. Gene replacement efficiency was markedly increased (300- to 400-fold) in KU80 knockouts compared to wild-type strains. Target DNA flanks of only approximately 500 bp were found to be sufficient for efficient gene replacements in KU80 knockouts. KU80 knockouts stably retained a normal growth rate in vitro and the high virulence phenotype of type I strains but exhibited an increased sensitivity to double-strand DNA breaks induced by treatment with phleomycin or gamma-irradiation. Collectively, these results revealed that a significant KU-dependent NHEJ DNA repair pathway is present in Toxoplasma gondii. Integration essentially occurs only at the homologous targeted sites in the KU80 knockout background, making this genetic background an efficient host for gene targeting to speed postgenome functional analysis and genetic dissection of parasite biology.

摘要

在顶复门寄生虫模式生物刚地弓形虫中,高频的非同源重组阻碍了基因打靶方法的应用。为了探究在这种专性细胞内寄生虫中,非同源末端连接(NHEJ)DNA修复途径是否能够被破坏,研究人员鉴定了假定的KU蛋白,并删除了预测的KU80基因。结果发现,在KU80基因敲除的情况下,通过双交换同源重组在几个基因位点进行基因打靶的效率在所有转化子中超过了97%。与野生型菌株相比,KU80基因敲除菌株的基因替换效率显著提高(300至400倍)。研究发现,在KU80基因敲除菌株中,仅约500 bp的靶DNA侧翼就足以实现高效的基因替换。KU80基因敲除菌株在体外稳定地保持了正常的生长速率和I型菌株的高毒力表型,但对博来霉素处理或γ射线照射诱导的双链DNA断裂表现出更高的敏感性。总体而言,这些结果表明,刚地弓形虫中存在一条重要的依赖KU的NHEJ DNA修复途径。在KU80基因敲除背景下,整合基本上只发生在同源靶位点,这使得该遗传背景成为基因打靶的有效宿主,有助于加速基因组后功能分析以及寄生虫生物学的遗传剖析。

相似文献

1
Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.
Eukaryot Cell. 2009 Apr;8(4):520-9. doi: 10.1128/EC.00357-08. Epub 2009 Feb 13.
3
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80.
Eukaryot Cell. 2009 Apr;8(4):530-9. doi: 10.1128/EC.00358-08. Epub 2009 Feb 13.
4
Ku80 gene is related to non-homologous end-joining and genome stability in Aspergillus niger.
Curr Microbiol. 2011 Apr;62(4):1342-6. doi: 10.1007/s00284-010-9853-5. Epub 2011 Jan 12.
6
Involvement of Ku80 in microhomology-mediated end joining for DNA double-strand breaks in vivo.
DNA Repair (Amst). 2007 May 1;6(5):639-48. doi: 10.1016/j.dnarep.2006.12.002. Epub 2007 Jan 22.
7
Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination.
FEMS Microbiol Lett. 2010 Sep 1;310(1):91-5. doi: 10.1111/j.1574-6968.2010.02052.x. Epub 2010 Jul 2.
8
An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation.
Cell Cycle. 2013 Feb 15;12(4):587-95. doi: 10.4161/cc.23408. Epub 2013 Jan 16.
10
Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in .
mSphere. 2022 Jun 29;7(3):e0015622. doi: 10.1128/msphere.00156-22. Epub 2022 Jun 13.

引用本文的文献

1
Role of p24δ in Regulating the Transition from Tachyzoite to Bradyzoite Development.
Int J Mol Sci. 2025 Apr 3;26(7):3331. doi: 10.3390/ijms26073331.
2
The contribution of the Golgi and the endoplasmic reticulum to calcium and pH homeostasis in Toxoplasma gondii.
J Biol Chem. 2025 Apr;301(4):108372. doi: 10.1016/j.jbc.2025.108372. Epub 2025 Mar 3.
4
Novel antibodies detect nucleocytoplasmic O-fucose in protist pathogens, cellular slime molds, and plants.
mSphere. 2025 Feb 25;10(2):e0094524. doi: 10.1128/msphere.00945-24. Epub 2025 Feb 6.
5
Construction and biological function of gene knockout strain.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Aug 28;49(8):1200-1209. doi: 10.11817/j.issn.1672-7347.2024.240179.
6
Emergent actin flows explain distinct modes of gliding motility.
Nat Phys. 2024;20(12):1989-1996. doi: 10.1038/s41567-024-02652-4. Epub 2024 Oct 8.
7
Novel antibodies detect nucleocytoplasmic O-fucose in protist pathogens, cellular slime molds, and plants.
bioRxiv. 2024 Oct 22:2024.10.15.618526. doi: 10.1101/2024.10.15.618526.
8
Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation.
J Biol Chem. 2024 Nov;300(11):107801. doi: 10.1016/j.jbc.2024.107801. Epub 2024 Sep 21.
9
The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony.
Nat Commun. 2024 Jan 26;15(1):793. doi: 10.1038/s41467-024-44967-z.
10
Evaluation of topotecan and 10-hydroxycamptothecin on Toxoplasma gondii: Implications on baseline DNA damage and repair efficiency.
Int J Parasitol Drugs Drug Resist. 2023 Dec;23:120-129. doi: 10.1016/j.ijpddr.2023.11.004. Epub 2023 Nov 24.

本文引用的文献

1
Genetic identification of essential indels and domains in carbamoyl phosphate synthetase II of Toxoplasma gondii.
Int J Parasitol. 2009 Apr;39(5):533-9. doi: 10.1016/j.ijpara.2008.09.011. Epub 2008 Oct 21.
2
Toxoplasma: the next 100years.
Microbes Infect. 2008 Jul;10(9):978-84. doi: 10.1016/j.micinf.2008.07.015. Epub 2008 Jul 10.
3
Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes.
Nucleic Acids Res. 2008 May;36(8):2608-18. doi: 10.1093/nar/gkn104. Epub 2008 Mar 11.
4
Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii.
PLoS Pathog. 2008 Feb 8;4(2):e36. doi: 10.1371/journal.ppat.0040036.
5
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae.
Genetics. 2008 Mar;178(3):1237-49. doi: 10.1534/genetics.107.083535. Epub 2008 Feb 3.
6
Rapid control of protein level in the apicomplexan Toxoplasma gondii.
Nat Methods. 2007 Dec;4(12):1003-5. doi: 10.1038/nmeth1134. Epub 2007 Nov 11.
7
Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology.
Eukaryot Cell. 2007 Oct;6(10):1773-81. doi: 10.1128/EC.00212-07. Epub 2007 Aug 10.
9
Highly efficient gene targeting in the Aspergillus niger kusA mutant.
J Biotechnol. 2007 Mar 10;128(4):770-5. doi: 10.1016/j.jbiotec.2006.12.021. Epub 2007 Jan 10.
10
Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells.
Eukaryot Cell. 2007 Jan;6(1):73-83. doi: 10.1128/EC.00309-06. Epub 2006 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验