Suppr超能文献

垃圾填埋场沉降模型的参数研究。

Parametric study of MSW landfill settlement model.

机构信息

Department of Civil Engineering, Indian Institute of Science, Bangalore 560 012, India.

出版信息

Waste Manag. 2011 Jun;31(6):1222-31. doi: 10.1016/j.wasman.2011.01.007. Epub 2011 Feb 26.

Abstract

A newly developed and validated constitutive model that accounts for primary compression and time-dependent mechanical creep and biodegradation is used for parametric study to investigate the effects of model parameters on the predicted settlement of municipal solid waste (MSW) with time. The model enables the prediction of stress strain response and yield surfaces for three components of settlement: primary compression, mechanical creep, and biodegradation. The MSW parameters investigated include compression index, coefficient of earth pressure at-rest, overconsolidation ratio, and biodegradation parameters of MSW. A comparison of the predicted settlements for typical MSW landfill conditions showed significant differences in time-settlement response depending on the selected model input parameters. The effect of lift thickness of MSW on predicted settlement is also investigated. Overall, the study shows that the variation in the model parameters can lead to significantly different results; therefore, the model parameter values should be carefully selected to predict landfill settlements accurately. It is shown that the proposed model captures the time settlement response which is in general agreement with the results obtained from the other two reported models having similar features.

摘要

本文采用一种新开发并经过验证的本构模型,该模型可以考虑主压缩和时变机械蠕变和生物降解,通过参数研究来调查模型参数对随时间变化的城市固体废物(MSW)沉降预测的影响。该模型可以预测沉降的三个组成部分:主压缩、机械蠕变和生物降解的应力应变响应和屈服面。研究的 MSW 参数包括压缩指数、静止土压力系数、超固结比和 MSW 的生物降解参数。对典型 MSW 垃圾填埋场条件下的预测沉降进行比较,结果表明,根据所选模型输入参数,沉降的时间响应存在显著差异。还研究了 MSW 提升厚度对预测沉降的影响。总体而言,研究表明模型参数的变化会导致显著不同的结果;因此,应仔细选择模型参数值以准确预测垃圾填埋场沉降。结果表明,所提出的模型可以捕捉时间沉降响应,与具有类似特征的另外两个报告模型的结果基本一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验