Suppr超能文献

基于线性判别分析(LDA)和支持向量机(SVM)的CT图像肺结节自动检测与诊断

[Automatic detection and diagnosis of lung nodules on CT images based on LDA and SVM].

作者信息

Cao Lei, Li Wei-juan, Feng Qian-jin

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2011 Feb;31(2):324-8.

Abstract

Based on suspected pulmonary nodule segmentation images obtained previously and with a large-sample training, automatic detection and diagnosis of the pulmonary nodules on CT images was realized by extracting the multi-dimensional features of the pulmonary nodule images and the application of LDA and SVM statistical classifiers. Experimental results showed that this detection and diagnosis method produced better classification results, and is practical for application in CAD systems.

摘要

基于先前获得的疑似肺结节分割图像并经过大样本训练,通过提取肺结节图像的多维特征以及应用线性判别分析(LDA)和支持向量机(SVM)统计分类器,实现了CT图像上肺结节的自动检测与诊断。实验结果表明,这种检测与诊断方法产生了较好的分类结果,并且在计算机辅助诊断(CAD)系统中具有实际应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验