Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Fraunhofer MEVIS, Bremen, Germany.
Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Fraunhofer MEVIS, Bremen, Germany.
Med Image Anal. 2014 Feb;18(2):374-84. doi: 10.1016/j.media.2013.12.001. Epub 2013 Dec 17.
Subsolid pulmonary nodules occur less often than solid pulmonary nodules, but show a much higher malignancy rate. Therefore, accurate detection of this type of pulmonary nodules is crucial. In this work, a computer-aided detection (CAD) system for subsolid nodules in computed tomography images is presented and evaluated on a large data set from a multi-center lung cancer screening trial. The paper describes the different components of the CAD system and presents experiments to optimize the performance of the proposed CAD system. A rich set of 128 features is defined for subsolid nodule candidates. In addition to previously used intensity, shape and texture features, a novel set of context features is introduced. Experiments show that these features significantly improve the classification performance. Optimization and training of the CAD system is performed on a large training set from one site of a lung cancer screening trial. Performance analysis on an independent test from another site of the trial shows that the proposed system reaches a sensitivity of 80% at an average of only 1.0 false positive detections per scan. A retrospective analysis of the output of the CAD system by an experienced thoracic radiologist shows that the CAD system is able to find subsolid nodules which were not contained in the screening database.
亚实性肺结节比实性肺结节少见,但恶性程度更高。因此,准确检测这类肺结节至关重要。本研究提出了一种计算机辅助检测(CAD)系统,用于检测 CT 图像中的亚实性结节,并在一项多中心肺癌筛查试验的大型数据集上进行了评估。本文描述了 CAD 系统的不同组成部分,并进行了实验以优化所提出的 CAD 系统的性能。为亚实性结节候选者定义了丰富的 128 个特征集。除了先前使用的强度、形状和纹理特征外,还引入了一组新的上下文特征。实验表明,这些特征可显著提高分类性能。CAD 系统的优化和训练是在一项肺癌筛查试验的一个站点的大型训练集中进行的。对该试验另一个站点的独立测试进行的性能分析表明,该系统在平均每个扫描仅 1.0 个假阳性检测的情况下达到了 80%的灵敏度。经验丰富的胸部放射科医生对 CAD 系统输出的回顾性分析表明,该 CAD 系统能够发现不在筛查数据库中的亚实性结节。
Med Image Anal. 2013-12-17
Med Image Anal. 2010-2-19
Biomed Mater Eng. 2015
IEEE Trans Med Imaging. 2016-3-1
Interdiscip Sci. 2025-6-2
Sci Data. 2024-7-27
Proc SPIE Int Soc Opt Eng. 2023-2
J Imaging Inform Med. 2024-2
Med Biol Eng Comput. 2024-2