文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动检测胸部 CT 图像中的亚实性肺结节。

Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images.

机构信息

Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Fraunhofer MEVIS, Bremen, Germany.

Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Fraunhofer MEVIS, Bremen, Germany.

出版信息

Med Image Anal. 2014 Feb;18(2):374-84. doi: 10.1016/j.media.2013.12.001. Epub 2013 Dec 17.


DOI:10.1016/j.media.2013.12.001
PMID:24434166
Abstract

Subsolid pulmonary nodules occur less often than solid pulmonary nodules, but show a much higher malignancy rate. Therefore, accurate detection of this type of pulmonary nodules is crucial. In this work, a computer-aided detection (CAD) system for subsolid nodules in computed tomography images is presented and evaluated on a large data set from a multi-center lung cancer screening trial. The paper describes the different components of the CAD system and presents experiments to optimize the performance of the proposed CAD system. A rich set of 128 features is defined for subsolid nodule candidates. In addition to previously used intensity, shape and texture features, a novel set of context features is introduced. Experiments show that these features significantly improve the classification performance. Optimization and training of the CAD system is performed on a large training set from one site of a lung cancer screening trial. Performance analysis on an independent test from another site of the trial shows that the proposed system reaches a sensitivity of 80% at an average of only 1.0 false positive detections per scan. A retrospective analysis of the output of the CAD system by an experienced thoracic radiologist shows that the CAD system is able to find subsolid nodules which were not contained in the screening database.

摘要

亚实性肺结节比实性肺结节少见,但恶性程度更高。因此,准确检测这类肺结节至关重要。本研究提出了一种计算机辅助检测(CAD)系统,用于检测 CT 图像中的亚实性结节,并在一项多中心肺癌筛查试验的大型数据集上进行了评估。本文描述了 CAD 系统的不同组成部分,并进行了实验以优化所提出的 CAD 系统的性能。为亚实性结节候选者定义了丰富的 128 个特征集。除了先前使用的强度、形状和纹理特征外,还引入了一组新的上下文特征。实验表明,这些特征可显著提高分类性能。CAD 系统的优化和训练是在一项肺癌筛查试验的一个站点的大型训练集中进行的。对该试验另一个站点的独立测试进行的性能分析表明,该系统在平均每个扫描仅 1.0 个假阳性检测的情况下达到了 80%的灵敏度。经验丰富的胸部放射科医生对 CAD 系统输出的回顾性分析表明,该 CAD 系统能够发现不在筛查数据库中的亚实性结节。

相似文献

[1]
Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images.

Med Image Anal. 2013-12-17

[2]
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

Med Image Anal. 2010-2-19

[3]
Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system.

Invest Radiol. 2015-3

[4]
Computer-aided detection of lung nodules using outer surface features.

Biomed Mater Eng. 2015

[5]
Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks.

IEEE Trans Med Imaging. 2016-3-1

[6]
Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.

Acad Radiol. 2008-12

[7]
Efficacy of computer-aided detection system and thin-slab maximum intensity projection technique in the detection of pulmonary nodules in patients with resected metastases.

Invest Radiol. 2009-2

[8]
Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT.

AJR Am J Roentgenol. 2013-1

[9]
Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system.

Eur J Radiol. 2016-10

[10]
Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels.

Comput Biol Med. 2014-9-28

引用本文的文献

[1]
SPCF-YOLO: An Efficient Feature Optimization Model for Real-Time Lung Nodule Detection.

Interdiscip Sci. 2025-6-2

[2]
Cnidaria herd optimized fuzzy C-means clustering enabled deep learning model for lung nodule detection.

Front Physiol. 2025-3-18

[3]
Exploring synthetic datasets for computer-aided detection: a case study using phantom scan data for enhanced lung nodule false positive reduction.

J Med Imaging (Bellingham). 2024-7

[4]
A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation.

Sci Data. 2024-7-27

[5]
Worldwide research landscape of artificial intelligence in lung disease: A scientometric study.

Heliyon. 2024-5-13

[6]
Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis.

Cancer Med. 2024-4

[7]
Lung nodule false positive reduction using a central attention convolutional neural network on imbalanced data.

Proc SPIE Int Soc Opt Eng. 2023-2

[8]
TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images.

J Imaging Inform Med. 2024-2

[9]
An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics.

Front Med (Lausanne). 2023-12-22

[10]
DBPNDNet: dual-branch networks using 3DCNN toward pulmonary nodule detection.

Med Biol Eng Comput. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索