Suppr超能文献

探索相互作用度量以识别信息丰富的基因对。

Exploring interaction measures to identify informative pairs of genes.

作者信息

Hanczar Blaise, Henegar Corneliu, Zucker Jean-Daniel

机构信息

LIPADE, University Paris Descartes, 45 rue des Saint-Peres, 75006 Paris, France.

出版信息

Int J Bioinform Res Appl. 2010;6(6):628-42. doi: 10.1504/IJBRA.2010.038743.

Abstract

Microarray experiments can be used for simultaneous expression of thousands of genes in various conditions. Data from these experiments are used to identify the gene involved in a particular biological phenomenon. Most current methods for such analysis assume that genes are independent. We explored the interaction between genes to identify informative gene pairs. This was based on measuring the interaction information using the information theory. We show that there are two kinds of gene interaction, redundancy and synergy. We analysed these interactions to construct a network of redundancy and conducted a functional analysis of synergic components on two public datasets.

摘要

微阵列实验可用于在各种条件下同时表达数千个基因。这些实验的数据用于识别参与特定生物学现象的基因。目前大多数此类分析方法都假定基因是独立的。我们探索了基因之间的相互作用以识别信息丰富的基因对。这是基于使用信息论来测量相互作用信息。我们表明存在两种基因相互作用,即冗余和协同。我们分析了这些相互作用以构建冗余网络,并在两个公共数据集上对协同组件进行了功能分析。

相似文献

1
Exploring interaction measures to identify informative pairs of genes.
Int J Bioinform Res Appl. 2010;6(6):628-42. doi: 10.1504/IJBRA.2010.038743.
2
Feature construction from synergic pairs to improve microarray-based classification.
Bioinformatics. 2007 Nov 1;23(21):2866-72. doi: 10.1093/bioinformatics/btm429. Epub 2007 Oct 9.
3
Handling gene redundancy in microarray data using Grey Relational Analysis.
Int J Data Min Bioinform. 2008;2(2):134-44. doi: 10.1504/ijdmb.2008.019094.
4
Boolean implication networks derived from large scale, whole genome microarray datasets.
Genome Biol. 2008 Oct 30;9(10):R157. doi: 10.1186/gb-2008-9-10-r157.
5
Exploring correlations in gene expression microarray data for maximum predictive-minimum redundancy biomarker selection and classification.
Comput Biol Med. 2013 Oct;43(10):1437-43. doi: 10.1016/j.compbiomed.2013.07.005. Epub 2013 Jul 13.
6
Minimum redundancy feature selection from microarray gene expression data.
J Bioinform Comput Biol. 2005 Apr;3(2):185-205. doi: 10.1142/s0219720005001004.
7
Selecting informative genes for discriminant analysis using multigene expression profiles.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S14. doi: 10.1186/1471-2164-9-S2-S14.
8
Fast calculation of pairwise mutual information for gene regulatory network reconstruction.
Comput Methods Programs Biomed. 2009 May;94(2):177-80. doi: 10.1016/j.cmpb.2008.11.003. Epub 2009 Jan 22.
9
Improving performances of suboptimal greedy iterative biclustering heuristics via localization.
Bioinformatics. 2010 Oct 15;26(20):2594-600. doi: 10.1093/bioinformatics/btq473. Epub 2010 Aug 23.
10
Using gene ontology to enhance effectiveness of similarity measures for microarray data.
Int J Data Min Bioinform. 2010;4(5):520-34. doi: 10.1504/ijdmb.2010.035898.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验