Qiu Peng, Gentles Andrew J, Plevritis Sylvia K
Department of Radiology, Stanford University, Stanford, CA, United States.
Comput Methods Programs Biomed. 2009 May;94(2):177-80. doi: 10.1016/j.cmpb.2008.11.003. Epub 2009 Jan 22.
We present a new software implementation to more efficiently compute the mutual information for all pairs of genes from gene expression microarrays. Computation of the mutual information is a necessary first step in various information theoretic approaches for reconstructing gene regulatory networks from microarray data. When the mutual information is estimated by kernel methods, computing the pairwise mutual information is quite time-consuming. Our implementation significantly reduces the computation time. For an example data set of 336 samples consisting of normal and malignant B-cells, with 9563 genes measured per sample, the current available software for ARACNE requires 142 hours to compute the mutual information for all gene pairs, whereas our algorithm requires 1.6 hours. The increased efficiency of our algorithm improves the feasibility of applying mutual information based approaches for reconstructing large regulatory networks.
我们提出了一种新的软件实现方法,以便更高效地计算基因表达微阵列中所有基因对之间的互信息。互信息的计算是从微阵列数据重建基因调控网络的各种信息论方法中必不可少的第一步。当通过核方法估计互信息时,计算成对互信息非常耗时。我们的实现显著减少了计算时间。对于一个由正常和恶性B细胞组成的包含336个样本的示例数据集,每个样本测量9563个基因,当前用于ARACNE的可用软件计算所有基因对的互信息需要142小时,而我们的算法仅需1.6小时。我们算法效率的提高增强了应用基于互信息的方法重建大型调控网络的可行性。