Institut für Pflanzenwissenschaften (IBG-2), Forschungszentrum Jülich, 52425 Jülich, Germany.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):271-84. doi: 10.1016/j.jphotobiol.2011.01.003. Epub 2011 Jan 9.
Lifetime-resolved imaging measurements of chlorophyll a fluorescence were made on leaves of avocado plants to study whether rapidly reversible ΔpH-dependent (transthylakoid H(+) concentration gradient) thermal energy dissipation (qE) and slowly reversible ΔpH-independent fluorescence quenching (qI) are modulated by lutein-epoxide and violaxanthin cycles operating in parallel. Under normal conditions (without inhibitors), analysis of the chlorophyll a fluorescence lifetime data revealed two major lifetime pools (1.5 and 0.5 ns) for photosystem II during the ΔpH build-up under illumination. Formation of the 0.5-ns pool upon illumination was correlated with dark-retention of antheraxanthin and photo-converted lutein in leaves. Interconversion between the 1.5- and 0.5-ns lifetime pools took place during the slow part of the chlorophyll a fluorescence transient: first from 1.5 ns to 0.5 ns in the P-to-S phase, then back from 0.5 ns to 1.5 ns in the S-to-M phase. When linear electron transport and the resulting ΔpH build-up were inhibited by treatment with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the major fluorescence intensity was due to a 2.2-ns lifetime pool with a minor faster contribution of approximately 0.7 ns. In the presence of DCMU, neither the intensity nor the lifetimes of fluorescence were affected by antheraxanthin and photo-converted lutein. Thus, we conclude that both antheraxanthin and photo-converted lutein are able to enhance ΔpH-dependent qE processes that are associated with the 0.5-ns lifetime pool. However, unlike zeaxanthin, retention of antheraxanthin and photo-converted lutein may not by itself stabilize quenching or cause qI.
对鳄梨叶片中的叶绿素 a 荧光进行了终生分辨成像测量,以研究叶黄素环氧化合物和紫黄质循环并行运行时,是否调节快速可逆的依赖 ΔpH 的(跨类囊体腔 H+浓度梯度)热能耗散(qE)和缓慢可逆的 ΔpH 不依赖的荧光猝灭(qI)。在正常条件下(没有抑制剂),对叶绿素 a 荧光寿命数据的分析表明,在光照下 ΔpH 建立过程中,光系统 II 有两个主要的寿命池(1.5 和 0.5 ns)。光照下形成 0.5-ns 池与叶片中花药黄质的暗保持和光转化叶黄素有关。1.5-和 0.5-ns 寿命池之间的相互转换发生在叶绿素 a 荧光瞬变的缓慢部分:首先从 P 相到 S 相从 1.5 ns 到 0.5 ns,然后从 S 相到 M 相从 0.5 ns 到 1.5 ns。当用 3-(3,4-二氯苯基)-1,1-二甲基脲(DCMU)处理以抑制线性电子传递和由此产生的 ΔpH 建立时,主要荧光强度归因于 2.2-ns 寿命池,其更快的次要贡献约为 0.7 ns。在 DCMU 存在下,花药黄质和光转化叶黄素既不影响荧光强度也不影响荧光寿命。因此,我们得出结论,花药黄质和光转化叶黄素都能够增强与 0.5-ns 寿命池相关的依赖 ΔpH 的 qE 过程。然而,与玉米黄质不同,花药黄质和光转化叶黄素的保留本身可能不会稳定猝灭或引起 qI。