Suppr超能文献

糖酵解振荡器中的周期轨道:从椭圆轨道到弛豫振荡

Periodic orbits in glycolytic oscillators: from elliptic orbits to relaxation oscillations.

作者信息

Roy T, Bhattacharjee J K, Mallik A K

机构信息

Department of Physics, Jadavpur University, 700032, Kolkata, India.

出版信息

Eur Phys J E Soft Matter. 2011 Feb;34(2):19. doi: 10.1140/epje/i2011-11019-6. Epub 2011 Feb 28.

Abstract

We consider the Sel'kov model of glycolytic oscillator for a quantitative study of the limit cycle oscillations in the system. We identify a region of parameter space where perturbation theory holds and use both Linstedt Poincaré technique and harmonic balance to obtain the shape and frequency of the limit cycle. The agreement with the numerically obtained result is excellent. We also find a different extreme, where the limit cycle is of the relaxation oscillator variety, has a large time period and it is seen that, as a particular parameter in the model is varied, the time period increases indefinitely. We characterize this divergence numerically. A calculational method is devised to capture the divergence approximately.

摘要

我们考虑糖酵解振荡器的塞尔科夫模型,以便对系统中的极限环振荡进行定量研究。我们确定了微扰理论适用的参数空间区域,并使用林德施泰特 - 庞加莱技术和谐波平衡法来获得极限环的形状和频率。与数值计算结果的一致性非常好。我们还发现了另一种极端情况,即极限环属于弛豫振荡器类型,具有很长的周期,并且可以看到,随着模型中的一个特定参数变化,周期会无限增加。我们用数值方法对这种发散进行了表征。设计了一种计算方法来近似捕捉这种发散。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验