Roy T, Bhattacharjee J K, Mallik A K
Department of Physics, Jadavpur University, 700032, Kolkata, India.
Eur Phys J E Soft Matter. 2011 Feb;34(2):19. doi: 10.1140/epje/i2011-11019-6. Epub 2011 Feb 28.
We consider the Sel'kov model of glycolytic oscillator for a quantitative study of the limit cycle oscillations in the system. We identify a region of parameter space where perturbation theory holds and use both Linstedt Poincaré technique and harmonic balance to obtain the shape and frequency of the limit cycle. The agreement with the numerically obtained result is excellent. We also find a different extreme, where the limit cycle is of the relaxation oscillator variety, has a large time period and it is seen that, as a particular parameter in the model is varied, the time period increases indefinitely. We characterize this divergence numerically. A calculational method is devised to capture the divergence approximately.
我们考虑糖酵解振荡器的塞尔科夫模型,以便对系统中的极限环振荡进行定量研究。我们确定了微扰理论适用的参数空间区域,并使用林德施泰特 - 庞加莱技术和谐波平衡法来获得极限环的形状和频率。与数值计算结果的一致性非常好。我们还发现了另一种极端情况,即极限环属于弛豫振荡器类型,具有很长的周期,并且可以看到,随着模型中的一个特定参数变化,周期会无限增加。我们用数值方法对这种发散进行了表征。设计了一种计算方法来近似捕捉这种发散。