Suppr超能文献

通过扩散耦合的两个双组分细胞中的自发振荡。

Spontaneous oscillations in two 2-component cells coupled by diffusion.

作者信息

Alexander J C

出版信息

J Math Biol. 1986;23(2):205-19. doi: 10.1007/BF00276957.

Abstract

Mathematical examples are presented of oscillators with two variables which do not oscillate in isolation, but which do oscillate stably when coupled with a twin via diffusion. Two examples are presented, the Lefever-Prigogine Brusselator and a system used to model glycolytic oscillations. The mathematical method is not the usual bifurcation theory, but rather a type of singular perturbation theory combined with bifurcation theory. For both examples, it is shown that all stationary solutions are unstable for appropriate parameter settings. In the case of the Brusselator, it is further shown that there exist limit cycles; i.e. stable oscillations, in this parameter range. A numerical example is presented.

摘要

给出了具有两个变量的振荡器的数学示例,这些振荡器单独时不会振荡,但通过扩散与孪生振荡器耦合时会稳定振荡。给出了两个示例,即勒费弗尔 - 普里戈金布鲁塞尔振子和一个用于模拟糖酵解振荡的系统。数学方法不是通常的分岔理论,而是一种与分岔理论相结合的奇异摄动理论。对于这两个示例,结果表明,在适当的参数设置下,所有稳态解都是不稳定的。对于布鲁塞尔振子的情况,进一步表明在该参数范围内存在极限环,即稳定振荡。给出了一个数值示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验