Alexander J C
J Math Biol. 1986;23(2):205-19. doi: 10.1007/BF00276957.
Mathematical examples are presented of oscillators with two variables which do not oscillate in isolation, but which do oscillate stably when coupled with a twin via diffusion. Two examples are presented, the Lefever-Prigogine Brusselator and a system used to model glycolytic oscillations. The mathematical method is not the usual bifurcation theory, but rather a type of singular perturbation theory combined with bifurcation theory. For both examples, it is shown that all stationary solutions are unstable for appropriate parameter settings. In the case of the Brusselator, it is further shown that there exist limit cycles; i.e. stable oscillations, in this parameter range. A numerical example is presented.
给出了具有两个变量的振荡器的数学示例,这些振荡器单独时不会振荡,但通过扩散与孪生振荡器耦合时会稳定振荡。给出了两个示例,即勒费弗尔 - 普里戈金布鲁塞尔振子和一个用于模拟糖酵解振荡的系统。数学方法不是通常的分岔理论,而是一种与分岔理论相结合的奇异摄动理论。对于这两个示例,结果表明,在适当的参数设置下,所有稳态解都是不稳定的。对于布鲁塞尔振子的情况,进一步表明在该参数范围内存在极限环,即稳定振荡。给出了一个数值示例。