Suppr超能文献

Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: challenges and novel cell design.

作者信息

Valtiner Markus, Ankah Genesis Ngwa, Bashir Asif, Renner Frank Uwe

机构信息

Department for Interface Chemistry and Surface Engineering, Max Planck Institut fur Eisenforschung GmbH, Dusseldorf, Germany.

出版信息

Rev Sci Instrum. 2011 Feb;82(2):023703. doi: 10.1063/1.3541650.

Abstract

We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and∕or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu(3)Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验