Department of Anatomy and Cell Biology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
Neurosci Lett. 2011 Apr 20;494(1):65-9. doi: 10.1016/j.neulet.2011.02.058. Epub 2011 Mar 6.
Adrenal corticosteroids readily enter the brain and exert markedly diverse effects, such as stress responses in the target neural cells. These effects are regulated by two receptor systems via the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), which are both ligand-dependent transcription factors. Several steroid hormone receptors including GR, estrogen receptor, and androgen receptor, have been shown to move rapidly in the nucleus even after ligand treatment, supposedly corresponding to transcriptional "fine-tuning". We applied fluorescence recovery after photobleaching (FRAP) to assess the mobility of green fluorescent protein (GFP)-tagged GR and -MR in the nucleus of transiently transfected cultured hippocampal neurons. FRAP results showed high mobility of GR and MR in the nucleus. Half-recovery time of GR was longer than that of MR in the presence of 10(-6)M corticosterone (CORT), but shorter in the presence of 10(-9)M CORT. Proteasome inhibition reduced the subnuclear mobility of GR and MR, and increased the transcriptional activity at both concentrations of CORT. We also investigated the differential effects of CORT concentration and proteasome inhibition on the nuclear retention level of these receptors. Our findings may provide intriguing new insights into the dynamics of corticosteroid receptors in neural cells and the molecular basis of stress regulation by these receptors in the hippocampus.
肾上腺皮质激素容易进入大脑,并产生明显不同的作用,如靶神经细胞的应激反应。这些作用通过两种受体系统进行调节,即盐皮质激素受体 (MR) 和糖皮质激素受体 (GR),它们都是配体依赖性转录因子。已经证明,包括 GR、雌激素受体和雄激素受体在内的几种甾体激素受体在配体处理后甚至能在核内迅速移动,这可能与转录的“微调”相对应。我们应用荧光恢复后漂白(FRAP)来评估瞬时转染培养海马神经元核内 GFP 标记的 GR 和 -MR 的流动性。FRAP 结果显示,GR 和 MR 在核内具有很高的流动性。在 10(-6)M 皮质酮(CORT)存在下,GR 的半恢复时间长于 MR,但在 10(-9)M CORT 存在下,GR 的半恢复时间短于 MR。蛋白酶体抑制降低了 GR 和 MR 的亚核流动性,并增加了两种 CORT 浓度下的转录活性。我们还研究了 CORT 浓度和蛋白酶体抑制对这些受体在核内保留水平的差异影响。我们的发现可能为皮质激素受体在神经细胞中的动力学以及这些受体在海马体中对应激的调节的分子基础提供了有趣的新见解。