Suppr超能文献

窖蛋白-3 可被 SUMO E3 连接酶 PIASy 进行 SUMO 化修饰:SUMO 化修饰会影响 G 蛋白偶联受体脱敏。

Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization.

机构信息

Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA.

出版信息

J Biol Chem. 2011 Apr 29;286(17):14830-41. doi: 10.1074/jbc.M110.214270. Epub 2011 Mar 1.

Abstract

Caveolin (Cav) proteins in the plasma membrane have numerous binding partners, but the determinants of these interactions are poorly understood. We show here that Cav-3 has a small ubiquitin-like modifier (SUMO) consensus motif (ΨKX(D/E, where Ψ is a hydrophobic residue)) near the scaffolding domain and that Cav-3 is SUMOylated in a manner that is enhanced by the SUMO E3 ligase PIASy (protein inhibitor of activated STAT-y). Site-directed mutagenesis revealed that the consensus site lysine is the preferred SUMOylation site but that mutation of all lysines is required to abolish SUMOylation. Co-expression of a SUMOylation-deficient mutant of Cav-3 with β-adrenergic receptors (βARs) alters the expression level of β(2)ARs but not β(1)ARs following agonist stimulation, thus implicating Cav-3 SUMOylation in the mechanisms for β(2)AR but not β(1)AR desensitization. Expression of endothelial nitric-oxide synthase (NOS3) was not altered by the SUMOylation-deficient mutant. Thus, SUMOylation is a covalent modification of caveolins that influence the regulation of certain signaling partners.

摘要

质膜中的窖蛋白(Cav)具有许多结合伴侣,但这些相互作用的决定因素尚不清楚。我们在此表明,Cav-3 在支架结构域附近具有一个小的泛素样修饰(SUMO)共有基序(ΨKX(D / E,其中 Ψ 是疏水性残基)),并且 Cav-3 的 SUMO 化方式被 SUMO E3 连接酶 PIASy(激活 STAT-y 的蛋白抑制剂)增强。定点诱变表明,共有基序赖氨酸是首选的 SUMO 化位点,但要消除 SUMO 化则需要突变所有赖氨酸。与β-肾上腺素能受体(βAR)共表达 Cav-3 的 SUMO 化缺陷突变体后,激动剂刺激后β(2)AR 的表达水平发生改变,但β(1)AR 则没有,这表明 Cav-3 SUMO 化参与了β(2)AR 而不是β(1)AR 脱敏的机制。内皮型一氧化氮合酶(NOS3)的表达不受 SUMO 化缺陷突变体的影响。因此,SUMO 化是窖蛋白的一种共价修饰,影响某些信号伴侣的调节。

相似文献

1
Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization.
J Biol Chem. 2011 Apr 29;286(17):14830-41. doi: 10.1074/jbc.M110.214270. Epub 2011 Mar 1.
2
Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
J Biol Chem. 2017 Jun 16;292(24):10230-10238. doi: 10.1074/jbc.M117.789982. Epub 2017 Apr 28.
4
SUMO3 modification by PIAS1 modulates androgen receptor cellular distribution and stability.
Cell Commun Signal. 2019 Nov 21;17(1):153. doi: 10.1186/s12964-019-0457-9.
5
PIASy mediates SUMO-2/3 conjugation of poly(ADP-ribose) polymerase 1 (PARP1) on mitotic chromosomes.
J Biol Chem. 2010 May 7;285(19):14415-23. doi: 10.1074/jbc.M109.074583. Epub 2010 Mar 12.
6
SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4.
Mol Cell Biol. 2005 May;25(9):3506-18. doi: 10.1128/MCB.25.9.3506-3518.2005.
8
SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene.
J Cell Biochem. 2013 Mar;114(3):589-98. doi: 10.1002/jcb.24396.
9
HIF-1α SUMOylation affects the stability and transcriptional activity of HIF-1α in human lens epithelial cells.
Graefes Arch Clin Exp Ophthalmol. 2015 Aug;253(8):1279-90. doi: 10.1007/s00417-015-2999-x. Epub 2015 Apr 16.

引用本文的文献

6
Rab17 regulates apical delivery of hepatic transcytotic vesicles.
Mol Biol Cell. 2018 Nov 15;29(23):2887-2897. doi: 10.1091/mbc.E18-07-0433. Epub 2018 Sep 26.
7
Caveolins as Regulators of Stress Adaptation.
Mol Pharmacol. 2018 Apr;93(4):277-285. doi: 10.1124/mol.117.111237. Epub 2018 Jan 22.
8
Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology.
Am J Physiol Cell Physiol. 2017 Apr 1;312(4):C459-C477. doi: 10.1152/ajpcell.00355.2016. Epub 2017 Jan 25.
10
Caveolins in cardioprotection - translatability and mechanisms.
Br J Pharmacol. 2015 Apr;172(8):2114-25. doi: 10.1111/bph.13009. Epub 2015 Jan 13.

本文引用的文献

1
Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking.
J Biol Chem. 2011 Feb 4;286(5):3884-93. doi: 10.1074/jbc.M110.152116. Epub 2010 Nov 30.
2
Mechanisms, regulation and consequences of protein SUMOylation.
Biochem J. 2010 May 13;428(2):133-45. doi: 10.1042/BJ20100158.
4
Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes.
J Biol Chem. 2009 Dec 4;284(49):33824-32. doi: 10.1074/jbc.M109.020388. Epub 2009 Oct 1.
5
The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization.
EMBO J. 2009 Jun 17;28(12):1684-96. doi: 10.1038/emboj.2009.128. Epub 2009 May 7.
6
Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway.
Cancer Res. 2009 Apr 1;69(7):2878-86. doi: 10.1158/0008-5472.CAN-08-2857. Epub 2009 Mar 24.
7
Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites.
Mol Cell Proteomics. 2009 Jun;8(6):1382-90. doi: 10.1074/mcp.M800551-MCP200. Epub 2009 Feb 24.
9
Strategies for the expression of SUMO-modified target proteins in Escherichia coli.
Methods Mol Biol. 2009;497:211-21. doi: 10.1007/978-1-59745-566-4_14.
10
Performing in vitro sumoylation reactions using recombinant enzymes.
Methods Mol Biol. 2009;497:187-99. doi: 10.1007/978-1-59745-566-4_12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验