Suppr超能文献

使用福尔马林固定、石蜡包埋组织的核酸酶保护检测,准确地将弥漫性大 B 细胞淋巴瘤分类为生发中心 B 细胞和活化 B 细胞亚型。

Accurate classification of diffuse large B-cell lymphoma into germinal center and activated B-cell subtypes using a nuclease protection assay on formalin-fixed, paraffin-embedded tissues.

机构信息

Department of Pathology, University of Arizona; High ThroughPut Genomics; Arizona Cancer Center, Tucson, Arizona 85724, USA.

出版信息

Clin Cancer Res. 2011 Jun 1;17(11):3727-32. doi: 10.1158/1078-0432.CCR-10-2573. Epub 2011 Mar 1.

Abstract

Classification of diffuse large B-cell lymphoma (DLBCL) into cell-of-origin (COO) subtypes based on gene expression profiles has well-established prognostic value. These subtypes, termed germinal center B cell (GCB) and activated B cell (ABC) also have different genetic alterations and overexpression of different pathways that may serve as therapeutic targets. Thus, accurate classification is essential for analysis of clinical trial results and planning new trials by using targeted agents. The current standard for COO classification uses gene expression profiling (GEP) of snap frozen tissues, and a Bayesian predictor algorithm. However, this is generally not feasible. In this study, we investigated whether the qNPA technique could be used for accurate classification of COO by using formalin-fixed, paraffin-embedded (FFPE) tissues. We analyzed expression levels of 14 genes in 121 cases of R-CHOP-treated DLBCL that had previously undergone GEP by using the Affymetrix U133 Plus 2.0 microarray and had matching FFPE blocks. Results were evaluated by using the previously published algorithm with a leave-one-out cross-validation approach. These results were compared with COO classification based on frozen tissue GEP profiles. For each case, a probability statistic was generated indicating the likelihood that the classification by using qNPA was accurate. When data were dichotomized into GCB or non-GCB, overall accuracy was 92%. The qNPA technique accurately categorized DLBCL into GCB and ABC subtypes, as defined by GEP. This approach is quantifiable, applicable to FFPE tissues with no technical failures, and has potential for significant impact on DLBCL research and clinical trial development.

摘要

基于基因表达谱对弥漫性大 B 细胞淋巴瘤 (DLBCL) 进行细胞起源 (COO) 亚型分类具有明确的预后价值。这些亚型被称为生发中心 B 细胞 (GCB) 和激活 B 细胞 (ABC),它们也具有不同的遗传改变和不同途径的过度表达,这些可能成为治疗靶点。因此,准确的分类对于分析临床试验结果和使用靶向药物计划新试验至关重要。目前 COO 分类的标准是使用冷冻组织的基因表达谱 (GEP) 和贝叶斯预测器算法。然而,这通常是不可行的。在这项研究中,我们研究了 qNPA 技术是否可以用于使用福尔马林固定、石蜡包埋 (FFPE) 组织对 COO 进行准确分类。我们分析了 121 例 R-CHOP 治疗的 DLBCL 病例的 14 个基因的表达水平,这些病例之前已经使用 Affymetrix U133 Plus 2.0 微阵列进行了 GEP 分析,并具有匹配的 FFPE 块。结果使用先前发表的算法通过留一法交叉验证方法进行评估。这些结果与基于冷冻组织 GEP 谱的 COO 分类进行了比较。对于每个病例,生成一个概率统计数据,指示使用 qNPA 进行分类的准确性的可能性。当数据被分为 GCB 或非 GCB 时,总体准确性为 92%。qNPA 技术能够准确地将 DLBCL 分为 GEP 定义的 GCB 和 ABC 亚型。这种方法是可量化的,适用于没有技术故障的 FFPE 组织,并且有可能对 DLBCL 研究和临床试验开发产生重大影响。

相似文献

7

引用本文的文献

本文引用的文献

3
Stromal gene signatures in large-B-cell lymphomas.大B细胞淋巴瘤中的基质基因特征
N Engl J Med. 2008 Nov 27;359(22):2313-23. doi: 10.1056/NEJMoa0802885.
8
Molecular diagnosis of Burkitt's lymphoma.伯基特淋巴瘤的分子诊断
N Engl J Med. 2006 Jun 8;354(23):2431-42. doi: 10.1056/NEJMoa055759.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验