Suppr超能文献

生物信息学中的广义质心估计。

Generalized centroid estimators in bioinformatics.

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.

出版信息

PLoS One. 2011 Feb 18;6(2):e16450. doi: 10.1371/journal.pone.0016450.

Abstract

In a number of estimation problems in bioinformatics, accuracy measures of the target problem are usually given, and it is important to design estimators that are suitable to those accuracy measures. However, there is often a discrepancy between an employed estimator and a given accuracy measure of the problem. In this study, we introduce a general class of efficient estimators for estimation problems on high-dimensional binary spaces, which represent many fundamental problems in bioinformatics. Theoretical analysis reveals that the proposed estimators generally fit with commonly-used accuracy measures (e.g. sensitivity, PPV, MCC and F-score) as well as it can be computed efficiently in many cases, and cover a wide range of problems in bioinformatics from the viewpoint of the principle of maximum expected accuracy (MEA). It is also shown that some important algorithms in bioinformatics can be interpreted in a unified manner. Not only the concept presented in this paper gives a useful framework to design MEA-based estimators but also it is highly extendable and sheds new light on many problems in bioinformatics.

摘要

在生物信息学的许多估计问题中,通常会给出目标问题的准确性度量,因此设计适合这些准确性度量的估计器非常重要。然而,所使用的估计器和问题的给定准确性度量之间常常存在差异。在本研究中,我们引入了一类用于高维二进制空间估计问题的通用有效估计器,这些估计器代表了生物信息学中的许多基本问题。理论分析表明,所提出的估计器通常适合于常用的准确性度量(例如灵敏度、PPV、MCC 和 F 分数),并且在许多情况下可以有效地计算,并且从最大期望准确性(MEA)的原则来看涵盖了生物信息学中的广泛问题。还表明,生物信息学中的一些重要算法可以以统一的方式进行解释。本文提出的概念不仅为设计基于 MEA 的估计器提供了有用的框架,而且具有高度的可扩展性,并为生物信息学中的许多问题提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d4/3041832/b71514782691/pone.0016450.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验