Suppr超能文献

基于组学的生物标志物发现中的数据挖掘方法。

Data mining methods in Omics-based biomarker discovery.

作者信息

Zhang Fan, Chen Jake Y

机构信息

Indiana University School of Informatics, Indianapolis, IN, USA.

出版信息

Methods Mol Biol. 2011;719:511-26. doi: 10.1007/978-1-61779-027-0_24.

Abstract

The advent of Omics technologies as genomics and proteomics has brought the hope of discovering novel biomarkers that can be used to diagnose, predict, and monitor the progress of disease. The importance of data mining to identify biological markers for the diagnostic classification and prognostic assessment in the context of microarray and proteomic data has been increasingly recognized. We present an overview of general data mining methods and their applications to biomarker discovery with particular focus on genomics and proteomics data. Two case studies are exemplarily presented, and relevant data mining terminology and techniques are explained.

摘要

随着基因组学和蛋白质组学等组学技术的出现,人们带来了发现可用于诊断、预测和监测疾病进展的新型生物标志物的希望。在微阵列和蛋白质组学数据的背景下,数据挖掘对于识别用于诊断分类和预后评估的生物标志物的重要性已得到越来越多的认可。我们概述了一般数据挖掘方法及其在生物标志物发现中的应用,特别关注基因组学和蛋白质组学数据。示例性地介绍了两个案例研究,并解释了相关的数据挖掘术语和技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验