Suppr超能文献

用于癌症靶点识别的综合生物信息学分析。

Integrated bioinformatics analysis for cancer target identification.

作者信息

Yang Yongliang, Adelstein S James, Kassis Amin I

机构信息

Department of Radiology, Harvard Medical School, Harvard University, Boston, MA, USA.

出版信息

Methods Mol Biol. 2011;719:527-45. doi: 10.1007/978-1-61779-027-0_25.

Abstract

The exponential growth of high-throughput Omics data has provided an unprecedented opportunity for new target identification to fuel the dried-up drug discovery pipeline. However, the bioinformatics analysis of large amount and heterogeneous Omics data has posed a great deal of technical challenges for experimentalists who lack statistical skills. Moreover, due to the complexity of human diseases, it is essential to analyze the Omics data in the context of molecular networks to detect meaningful biological targets and understand disease processes. Here, we describe an integrated bioinformatics analysis strategy and provide a running example to identify suitable targets for our in-house Enzyme-Mediated Cancer Imaging and Therapy (EMCIT) technology. In addition, we go through a few key concepts in the process, including corrected false discovery rate (FDR), Gene Ontology (GO), pathway analysis, and tissue specificity. We also describe popular programs and databases which allow the convenient annotation and network analysis of Omics data. We provide a practical guideline for researchers to quickly follow the protocol described and identify those targets that are pertinent to their work.

摘要

高通量组学数据的指数增长为新靶点识别提供了前所未有的机会,以充实枯竭的药物发现管道。然而,对大量且异质的组学数据进行生物信息学分析,给缺乏统计技能的实验人员带来了诸多技术挑战。此外,由于人类疾病的复杂性,在分子网络背景下分析组学数据对于检测有意义的生物学靶点和理解疾病过程至关重要。在此,我们描述一种综合生物信息学分析策略,并提供一个实例来为我们内部的酶介导癌症成像与治疗(EMCIT)技术识别合适的靶点。此外,我们梳理了该过程中的几个关键概念,包括校正后的错误发现率(FDR)、基因本体论(GO)、通路分析和组织特异性。我们还介绍了允许对组学数据进行便捷注释和网络分析的常用程序和数据库。我们为研究人员提供了一份实用指南,以便他们能快速遵循所述方案并识别与其工作相关的那些靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验