Suppr超能文献

开发用于微粒体环氧化物水解酶的荧光底物及其在抑制研究中的应用。

Development of fluorescent substrates for microsomal epoxide hydrolase and application to inhibition studies.

机构信息

Department of Entomology and Cancer Center, University of California - Davis, 95616, USA.

出版信息

Anal Biochem. 2011 Jul 1;414(1):154-62. doi: 10.1016/j.ab.2011.02.038. Epub 2011 Mar 1.

Abstract

The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of numerous xenobiotics. In addition, it has a potential role in sexual development and bile acid transport, and it is associated with a number of diseases such as emphysema, spontaneous abortion, eclampsia, and several forms of cancer. Toward developing chemical tools to study the biological role of mEH, we designed and synthesized a series of absorbent and fluorescent substrates. The highest activity for both rat and human mEH was obtained with the fluorescent substrate cyano(6-methoxy-naphthalen-2-yl)methyl glycidyl carbonate (11). An in vitro inhibition assay using this substrate ranked a series of known inhibitors similarly to the assay that used radioactive cis-stilbene oxide but with a greater discrimination between inhibitors. These results demonstrate that the new fluorescence-based assay is a useful tool for the discovery of structure-activity relationships among mEH inhibitors. Furthermore, this substrate could also be used for the screening chemical library with high accuracy and with a Z' value of approximately 0.7. This new assay permits a significant decrease in labor and cost and also offers the advantage of a continuous readout. However, it should not be used with crude enzyme preparations due to interfering reactions.

摘要

微粒体环氧化物水解酶(mEH)在许多外源物质的代谢中起着重要作用。此外,它在性发育和胆汁酸转运中具有潜在作用,并且与肺气肿、自然流产、子痫、几种形式的癌症等许多疾病有关。为了开发用于研究 mEH 生物学作用的化学工具,我们设计并合成了一系列吸收性和荧光性底物。对于大鼠和人 mEH,最高的活性是用荧光底物氰基(6-甲氧基-萘-2-基)甲基缩水甘油碳酸酯(11)获得的。使用该底物的体外抑制测定与使用放射性顺式-亚乙烯氧化物的测定相似,但对抑制剂的区分度更大,对一系列已知抑制剂进行了排序。这些结果表明,新的基于荧光的测定法是发现 mEH 抑制剂结构-活性关系的有用工具。此外,该底物还可用于高准确度的化学文库筛选,Z' 值约为 0.7。这种新的测定法可以显著减少劳动力和成本,并且还具有连续读数的优势。但是,由于存在干扰反应,不应在粗酶制剂中使用。

相似文献

1
Development of fluorescent substrates for microsomal epoxide hydrolase and application to inhibition studies.
Anal Biochem. 2011 Jul 1;414(1):154-62. doi: 10.1016/j.ab.2011.02.038. Epub 2011 Mar 1.
2
Fluorescent substrates for soluble epoxide hydrolase and application to inhibition studies.
Anal Biochem. 2005 Aug 1;343(1):66-75. doi: 10.1016/j.ab.2005.03.041.
3
Inhibition of microsomal epoxide hydrolases by ureas, amides, and amines.
Chem Res Toxicol. 2001 Apr;14(4):409-15. doi: 10.1021/tx0001732.
4
Development of potent inhibitors of the human microsomal epoxide hydrolase.
Eur J Med Chem. 2020 May 1;193:112206. doi: 10.1016/j.ejmech.2020.112206. Epub 2020 Mar 13.
5
Development of metabolically stable inhibitors of Mammalian microsomal epoxide hydrolase.
Chem Res Toxicol. 2008 Apr;21(4):951-7. doi: 10.1021/tx700446u. Epub 2008 Mar 25.
6
Development of a high-throughput screen for soluble epoxide hydrolase inhibition.
Anal Biochem. 2006 Aug 1;355(1):71-80. doi: 10.1016/j.ab.2006.04.045. Epub 2006 May 11.
7
Complementary screening techniques yielded fragments that inhibit the phosphatase activity of soluble epoxide hydrolase.
ChemMedChem. 2011 Dec 9;6(12):2146-9. doi: 10.1002/cmdc.201100433. Epub 2011 Oct 21.
8
A long-wavelength, fluorogenic probe for epoxide hydrolase: 7-(2-(oxiran-2-yl)ethoxy) resorufin.
Biol Pharm Bull. 2009 Sep;32(9):1496-9. doi: 10.1248/bpb.32.1496.
9
Epoxide hydrolases in the rat epididymis: possible roles in xenobiotic and endogenous fatty acid metabolism.
Toxicol Sci. 2004 Apr;78(2):187-95. doi: 10.1093/toxsci/kfh066. Epub 2004 Jan 21.

引用本文的文献

1
2
The Generation of a Nanobody-Based ELISA for Human Microsomal Epoxide Hydrolase.
Int J Mol Sci. 2023 Sep 28;24(19):14698. doi: 10.3390/ijms241914698.
3
PROTAC-Mediated Selective Degradation of Cytosolic Soluble Epoxide Hydrolase Enhances ER Stress Reduction.
ACS Chem Biol. 2023 Apr 21;18(4):884-896. doi: 10.1021/acschembio.3c00017. Epub 2023 Mar 22.
4
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives.
Acta Pharm Sin B. 2022 Mar;12(3):1068-1099. doi: 10.1016/j.apsb.2022.01.009. Epub 2022 Jan 21.
6
Nanobody-based binding assay for the discovery of potent inhibitors of CFTR inhibitory factor (Cif).
Anal Chim Acta. 2019 May 30;1057:106-113. doi: 10.1016/j.aca.2018.12.060. Epub 2019 Jan 9.
7
Substrate and inhibitor selectivity, and biological activity of an epoxide hydrolase from Trichoderma reesei.
Mol Biol Rep. 2019 Feb;46(1):371-379. doi: 10.1007/s11033-018-4481-4. Epub 2018 Nov 13.
8
LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide.
Methods Mol Biol. 2018;1730:123-133. doi: 10.1007/978-1-4939-7592-1_10.
9
In Vitro Metabolism of Oprozomib, an Oral Proteasome Inhibitor: Role of Epoxide Hydrolases and Cytochrome P450s.
Drug Metab Dispos. 2017 Jul;45(7):712-720. doi: 10.1124/dmd.117.075226. Epub 2017 Apr 20.
10
Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.
J Med Chem. 2016 May 26;59(10):4790-9. doi: 10.1021/acs.jmedchem.6b00173. Epub 2016 May 4.

本文引用的文献

1
Metabolism and toxicity of styrene in microsomal epoxide hydrolase-deficient mice.
J Toxicol Environ Health A. 2010;73(24):1689-99. doi: 10.1080/15287394.2010.516240.
2
Cytochrome P450-derived eicosanoids: the neglected pathway in cancer.
Cancer Metastasis Rev. 2010 Dec;29(4):723-35. doi: 10.1007/s10555-010-9264-x.
4
Influence of GSTs, CYP2E1 and mEH polymorphisms on 1, 3-butadiene-induced micronucleus frequency in Chinese workers.
Toxicol Appl Pharmacol. 2010 Sep 15;247(3):198-203. doi: 10.1016/j.taap.2010.07.006. Epub 2010 Jul 15.
5
Microsomal epoxide hydrolase expression in the endometrial uterine corpus is regulated by progesterone during the menstrual cycle.
J Mol Histol. 2010 Apr;41(2-3):111-9. doi: 10.1007/s10735-010-9266-6. Epub 2010 Apr 13.
6
Toxicology in the fast lane: application of high-throughput bioassays to detect modulation of key enzymes and receptors.
Environ Health Perspect. 2009 Dec;117(12):1867-72. doi: 10.1289/ehp.0900834. Epub 2009 Jul 31.
7
Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases.
Nat Rev Drug Discov. 2009 Oct;8(10):794-805. doi: 10.1038/nrd2875.
8
A long-wavelength, fluorogenic probe for epoxide hydrolase: 7-(2-(oxiran-2-yl)ethoxy) resorufin.
Biol Pharm Bull. 2009 Sep;32(9):1496-9. doi: 10.1248/bpb.32.1496.
9
Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism.
Neuroscience. 2009 Oct 6;163(2):646-61. doi: 10.1016/j.neuroscience.2009.06.033. Epub 2009 Jun 18.
10
Mammalian epoxide hydrolases in xenobiotic metabolism and signalling.
Arch Toxicol. 2009 Apr;83(4):297-318. doi: 10.1007/s00204-009-0416-0. Epub 2009 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验