Wang Zhican, Fang Ying, Teague Juli, Wong Hansen, Morisseau Christophe, Hammock Bruce D, Rock Dan A, Wang Zhengping
Department of Pharmacokinetics and Drug Metabolism (Zhi.W., Y.F., D.A.R., Zhe.W.), and Clinical Pharmacology Modeling and Simulation (H.W.), Amgen Inc., South San Francisco, California; Drug Metabolism and Pharmacokinetics, Onyx Pharmaceuticals, an Amgen Subsidiary, South San Francisco, California (J.T.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (C.M., B.D.H.).
Department of Pharmacokinetics and Drug Metabolism (Zhi.W., Y.F., D.A.R., Zhe.W.), and Clinical Pharmacology Modeling and Simulation (H.W.), Amgen Inc., South San Francisco, California; Drug Metabolism and Pharmacokinetics, Onyx Pharmaceuticals, an Amgen Subsidiary, South San Francisco, California (J.T.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (C.M., B.D.H.)
Drug Metab Dispos. 2017 Jul;45(7):712-720. doi: 10.1124/dmd.117.075226. Epub 2017 Apr 20.
Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site -terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the -cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers.
奥罗佐米布是一种口服蛋白酶体抑制剂,目前正在血液系统恶性肿瘤或实体瘤患者中进行研究。奥罗佐米布通过与20S蛋白酶体的活性位点末端苏氨酸形成共价键,引发强大的药理作用。由于通过代谢进行全身清除,奥罗佐米布在临床前物种和患者中的半衰期较短。药物-药物相互作用(DDIs)的可能性可能会改变这种强效治疗药物的暴露情况;因此,需要对负责代谢的途径进行全面研究。在本研究中,体外鉴定了负责奥罗佐米布代谢的主要药物代谢酶。奥罗佐米布的二醇被发现是人类肝细胞中的主要代谢产物,它通过直接环氧化物水解形成。在肝微粒体中使用重组环氧化物水解酶(EHs)和选择性EH抑制剂,发现微粒体EH(mEH)而非可溶性EH(sEH)负责奥罗佐米布二醇的形成。与选择性mEH抑制剂2-壬基硫烷基丙酰胺共同孵育,导致奥罗佐米布消失显著减少(>80%),同时人类肝细胞中二醇形成完全受阻。相反,选择性sEH抑制剂不影响奥罗佐米布的代谢。用细胞色素P450(P450)抑制剂1-氨基苯并三唑预处理肝细胞,导致奥罗佐米布代谢适度降低(约20%)。这些发现表明mEH在奥罗佐米布代谢中起主要作用。可能需要进一步研究以确定作为mEH抑制剂的药物是否会与奥罗佐米布产生具有临床意义的DDIs。另一方面,奥罗佐米布的药代动力学不太可能受到共同给药的P450和sEH抑制剂及/或诱导剂的影响。