Suppr超能文献

蛋白质的核输入的概率模型。

A probabilistic model of nuclear import of proteins.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

出版信息

Bioinformatics. 2011 May 1;27(9):1239-46. doi: 10.1093/bioinformatics/btr121. Epub 2011 Mar 3.

Abstract

MOTIVATION

Nucleo-cytoplasmic trafficking of proteins is a core regulatory process that sustains the integrity of the nuclear space of eukaryotic cells via an interplay between numerous factors. Despite progress on experimentally characterizing a number of nuclear localization signals, their presence alone remains an unreliable indicator of actual translocation.

RESULTS

This article introduces a probabilistic model that explicitly recognizes a variety of nuclear localization signals, and integrates relevant amino acid sequence and interaction data for any candidate nuclear protein. In particular, we develop and incorporate scoring functions based on distinct classes of classical nuclear localization signals. Our empirical results show that the model accurately predicts whether a protein is imported into the nucleus, surpassing the classification accuracy of similar predictors when evaluated on the mouse and yeast proteomes (area under the receiver operator characteristic curve of 0.84 and 0.80, respectively). The model also predicts the sequence position of a nuclear localization signal and whether it interacts with importin-α.

AVAILABILITY

http://pprowler.itee.uq.edu.au/NucImport

摘要

动机

蛋白质的核质运输是一种核心调节过程,通过众多因素的相互作用,维持真核细胞核空间的完整性。尽管在实验上对许多核定位信号进行了特征描述,但仅存在核定位信号本身并不能可靠地指示实际的转位。

结果

本文介绍了一种概率模型,该模型明确识别了各种核定位信号,并整合了任何候选核蛋白的相关氨基酸序列和相互作用数据。特别是,我们开发并整合了基于不同类别的经典核定位信号的评分函数。我们的实验结果表明,该模型能够准确预测蛋白质是否被导入细胞核,在评估小鼠和酵母蛋白质组时,其分类准确性超过了类似预测器(接收器操作特征曲线下的面积分别为 0.84 和 0.80)。该模型还可以预测核定位信号的序列位置及其是否与 importin-α 相互作用。

可用性

http://pprowler.itee.uq.edu.au/NucImport

相似文献

1
A probabilistic model of nuclear import of proteins.蛋白质的核输入的概率模型。
Bioinformatics. 2011 May 1;27(9):1239-46. doi: 10.1093/bioinformatics/btr121. Epub 2011 Mar 3.

引用本文的文献

2
Karyopherin-mediated nucleocytoplasmic transport.核质穿梭蛋白介导的核质转运。
Nat Rev Mol Cell Biol. 2022 May;23(5):307-328. doi: 10.1038/s41580-021-00446-7. Epub 2022 Jan 20.
6
Predicting the dynamics of protein abundance.预测蛋白质丰度的动态变化。
Mol Cell Proteomics. 2014 May;13(5):1330-40. doi: 10.1074/mcp.M113.033076. Epub 2014 Feb 16.

本文引用的文献

1
Molecular basis for specificity of nuclear import and prediction of nuclear localization.核输入特异性的分子基础及核定位预测
Biochim Biophys Acta. 2011 Sep;1813(9):1562-77. doi: 10.1016/j.bbamcr.2010.10.013. Epub 2010 Oct 25.
6
What is the expectation maximization algorithm?期望最大化算法是什么?
Nat Biotechnol. 2008 Aug;26(8):897-9. doi: 10.1038/nbt1406.
7
Towards defining the nuclear proteome.向着定义核蛋白质组迈进。
Genome Biol. 2008 Jan 23;9(1):R15. doi: 10.1186/gb-2008-9-1-r15.
8
The molecular architecture of the nuclear pore complex.核孔复合体的分子结构
Nature. 2007 Nov 29;450(7170):695-701. doi: 10.1038/nature06405.
9
Cell biology: pore puzzle.细胞生物学:孔隙之谜
Nature. 2007 Nov 29;450(7170):621-2. doi: 10.1038/450621a.
10
NucPred--predicting nuclear localization of proteins.NucPred——预测蛋白质的核定位
Bioinformatics. 2007 May 1;23(9):1159-60. doi: 10.1093/bioinformatics/btm066. Epub 2007 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验