Suppr超能文献

快速平均化?没那么快!

Rapid averaging? Not so fast!

机构信息

University of Regina, Regina, SK, Canada.

出版信息

Psychon Bull Rev. 2011 Jun;18(3):484-9. doi: 10.3758/s13423-011-0071-3.

Abstract

Previous research suggests that sets of similar items are represented using a rapid averaging mechanism that automatically extracts statistical properties within 50 ms. However, typically in these studies, displays are not masked, so it is possible that the sets are available for longer than this duration. In the present study, using masked displays, we (a) tested a newly proposed strategy for extracting the mean size of a set of circles, and (b) more precisely evaluated the time course of rapid averaging. The results indicate that when viewing conditions are poor, performance can be explained by assuming that observers rely on information from previous trials. In this study, observers required at least a 200-ms exposure time in order to derive the average size of a set of circles without relying on information from previously-viewed sets, suggesting that rapid averaging is not as fast as previously assumed and, therefore, that it may not be an automatic process.

摘要

先前的研究表明,相似项目集是通过一种快速平均机制来表示的,该机制在 50 毫秒内自动提取统计属性。然而,通常在这些研究中,显示内容不会被屏蔽,因此这些项目集可能会持续更长时间。在本研究中,我们使用屏蔽显示内容:(a)测试了一种新提出的策略,用于提取一组圆形的平均大小,(b)更精确地评估了快速平均的时间进程。结果表明,当观察条件较差时,性能可以通过假设观察者依赖于前一个试验的信息来解释。在这项研究中,观察者至少需要 200 毫秒的暴露时间,才能不依赖于先前观看的集合中的信息来计算一组圆形的平均大小,这表明快速平均的速度并不像之前假设的那么快,因此,它可能不是一个自动过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验