Psychology Department, HSE University, Armyansky per., 4, building 2, Office 419, Moscow, Russian Federation, 101000.
Sci Rep. 2021 Jan 11;11(1):377. doi: 10.1038/s41598-020-79828-4.
Our visual system is able to separate spatially intermixed objects into different categorical groups (e.g., berries and leaves) using the shape of feature distribution: Determining whether all objects belong to one or several categories depends on whether the distribution has one or several peaks. Despite the apparent ease of rapid categorization, it is a very computationally demanding task, given severely limited "bottlenecks" of attention and working memory capable of processing only a few objects at a time. Here, we tested whether this rapid categorical parsing is automatic or requires attention. We used the visual mismatch negativity (vMMN) ERP component known as a marker of automatic sensory discrimination. 20 volunteers (16 female, mean age-22.7) participated in our study. Loading participants' attention with a central task, we observed a substantial vMMN response to unattended background changes of categories defined by certain length-orientation conjunctions. Importantly, this occurred in conditions where the distributions of these features had several peaks and, hence, supported categorical separation. These results suggest that spatially intermixed objects are parsed into distinct categories automatically and give new insight into how the visual system can bypass the severe processing restrictions and form rich perceptual experience.
我们的视觉系统能够利用特征分布的形状将空间混合的物体分为不同的类别(例如,浆果和树叶):确定所有物体是否属于一个或多个类别取决于分布是否有一个或多个峰。尽管快速分类看起来很容易,但由于注意力和工作记忆的“瓶颈”严重受限,一次只能处理少数几个物体,因此这是一项非常计算密集的任务。在这里,我们测试了这种快速的类别解析是自动的还是需要注意力的。我们使用了视觉失匹配负波(vMMN)ERP 成分,它是自动感觉辨别力的标志。20 名志愿者(16 名女性,平均年龄 22.7 岁)参加了我们的研究。通过中央任务加载参与者的注意力,我们观察到对未被注意的背景类别的显著 vMMN 反应,这些类别由特定的长度-方向结合定义。重要的是,这发生在这些特征的分布有多个峰的情况下,因此支持类别分离。这些结果表明,空间混合的物体被自动分为不同的类别,并为视觉系统如何能够绕过严重的处理限制形成丰富的感知体验提供了新的见解。