Suppr超能文献

纳米尺度可视化及铁柄菌扭曲菌杆无机/有机杂化结构的结构分析。

Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks.

机构信息

Department of Material Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

出版信息

Appl Environ Microbiol. 2011 May;77(9):2877-81. doi: 10.1128/AEM.02867-10. Epub 2011 Mar 4.

Abstract

The so-called Fe/Mn-oxidizing bacteria have long been recognized for their potential to form extracellular iron hydroxide or manganese oxide structures in aquatic environments. Bacterial species belonging to the genus Gallionella, one type of such bacteria, oxidize iron and produce uniquely twisted extracellular stalks consisting of iron oxide-encrusted inorganic/organic fibers. This paper describes the ultrastructure of Gallionella cells and stalks and the visualized structural and spatial localization of constitutive elements within the stalks. Electron microscopy with energy-dispersive X-ray microanalysis showed the export site of the stalk fibers from the cell and the uniform distribution of iron, silicon, and phosphorous in the stalks. Electron energy-loss spectroscopy revealed that the stalk fibers had a central carbon core of bacterial exopolymers and that aquatic iron interacted with oxygen at the surface of the carbon core, resulting in deposition of iron oxides at the surface. This new knowledge of the structural and spatial associations of iron with oxygen and carbon provides deeper insights into the unique inorganic/organic hybrid structure of the stalks.

摘要

所谓的 Fe/Mn- 氧化细菌长期以来一直被认为具有在水生环境中形成细胞外氢氧化铁或氧化锰结构的潜力。属于嘉利翁氏菌属(Gallionella)的细菌种类就是其中的一种,它能氧化铁并产生独特扭曲的细胞外菌柄,由氧化铁包裹的无机/有机纤维组成。本文描述了嘉利翁氏菌细胞和菌柄的超微结构,以及菌柄内组成元素的可视化结构和空间定位。电子显微镜和能量色散 X 射线微分析显示,菌柄纤维从细胞中输出的位置以及菌柄中铁、硅和磷的均匀分布。电子能量损失光谱揭示了菌柄纤维具有细菌胞外聚合物的中央碳核,并且水中的铁与碳核表面的氧相互作用,导致铁氧化物在表面沉积。这种铁与氧和碳的结构和空间关联的新知识为菌柄独特的无机/有机混合结构提供了更深入的了解。

相似文献

1
2
Silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks.
Appl Environ Microbiol. 2012 Jan;78(1):236-41. doi: 10.1128/AEM.05913-11. Epub 2011 Oct 21.
3
Two types of morphologically distinct fibers comprising Gallionella ferruginea twisted stalks.
Microbes Environ. 2012;27(3):338-41. doi: 10.1264/jsme2.me11340. Epub 2012 Mar 28.
4
Structural and spatial associations between Fe, O, and C in the network structure of the Leptothrix ochracea sheath surface.
Appl Environ Microbiol. 2011 Nov;77(21):7873-5. doi: 10.1128/AEM.06003-11. Epub 2011 Sep 16.
9
Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.
Geobiology. 2014 Mar;12(2):146-56. doi: 10.1111/gbi.12074. Epub 2014 Jan 16.
10
Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite.
Environ Sci Technol. 2016 Jan 5;50(1):25-35. doi: 10.1021/acs.est.5b03021. Epub 2015 Dec 4.

引用本文的文献

2
Geochemical insights and model optimisation for pilot-scale passive treatment of manganese and zinc in a legacy mine in Japan.
Heliyon. 2024 Nov 13;10(22):e40363. doi: 10.1016/j.heliyon.2024.e40363. eCollection 2024 Nov 30.
4
Eco-Benign Orange-Hued Pigment Derived from Aluminum-Enriched Biogenous Iron Oxide Sheaths.
ACS Omega. 2022 Apr 10;7(15):12795-12802. doi: 10.1021/acsomega.1c07390. eCollection 2022 Apr 19.
5
Metabolically diverse primordial microbial communities in Earth's oldest seafloor-hydrothermal jasper.
Sci Adv. 2022 Apr 15;8(15):eabm2296. doi: 10.1126/sciadv.abm2296. Epub 2022 Apr 13.
6
Micro- and nano-scale mineralogical characterization of Fe(II)-oxidizing bacterial stalks.
Geobiology. 2020 Sep;18(5):606-618. doi: 10.1111/gbi.12398. Epub 2020 May 27.
8
Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments.
Appl Environ Microbiol. 2016 Sep 16;82(19):5741-55. doi: 10.1128/AEM.01151-16. Print 2016 Oct 1.
9
The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.
Front Microbiol. 2016 Jan 6;6:1502. doi: 10.3389/fmicb.2015.01502. eCollection 2015.
10
Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
Front Microbiol. 2015 Nov 13;6:1265. doi: 10.3389/fmicb.2015.01265. eCollection 2015.

本文引用的文献

2
Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold.
Org Biomol Chem. 2010 Jan 21;8(2):336-8. doi: 10.1039/b919497e. Epub 2009 Oct 19.
3
Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria.
Appl Environ Microbiol. 2009 Sep;75(17):5586-91. doi: 10.1128/AEM.00490-09. Epub 2009 Jul 10.
6
AFM observation of band-like cellulose assemblies produced by Acetobacter xylinum.
Biomacromolecules. 2004 Nov-Dec;5(6):2079-81. doi: 10.1021/bm049747y.
7
Microbial polysaccharides template assembly of nanocrystal fibers.
Science. 2004 Mar 12;303(5664):1656-8. doi: 10.1126/science.1092098.
8
A selective enrichment method for Gallionella ferruginea.
J Bacteriol. 1957 Sep;74(3):344-9. doi: 10.1128/jb.74.3.344-349.1957.
9
Electron microscopy of Gallionella ferruginea.
J Bacteriol. 1956 Aug;72(2):248-52. doi: 10.1128/jb.72.2.248-252.1956.
10
Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system.
Appl Environ Microbiol. 1981 Jan;41(1):274-87. doi: 10.1128/aem.41.1.274-287.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验