Soares André, Rassner Sara Maria Edwards, Edwards Arwyn, Farr Gareth, Blackwell Nia, Sass Henrik, Persiani Guglielmo, Schofield David, Mitchell Andrew C
Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University (AU), Aberystwyth, SY23 3DD, United Kingdom.
Department of Life Sciences (DLS), AU, Aberystwyth, SY23 3DD, United Kingdom.
FEMS Microbiol Ecol. 2025 Apr 14;101(5). doi: 10.1093/femsec/fiaf039.
Pyrite oxidation drives iron and sulfur availability across Earth's subsurface and is partly microbially mediated. Subsurface microbial communities accelerate this process at circumneutral pH directly by weathering pyritic surfaces and indirectly by causing changes to the surrounding microenvironment, thereby further accelerating pyrite weathering. However, our understanding of community structure dynamics and associated biogeochemistry in Fe- and S-rich lithologies, e.g. pyritic coal, is limited. Here, we present the first comprehensive regional and seasonal genus-level survey of bacterial groundwater communities in a pyritic coal-based aquifer in the South Wales Coalfield (SWC), using 16S rRNA gene amplicon sequencing. Seasonal changes in community structure were limited, suggesting limited influence of surface processes on subsurface communities. Instead, hydrogeologically distinct mine water blocks (MWB) and coal rank largely explained bacterial community structure variation across sites. Fe(II)-oxidizing Betaproteobacteriales genera Gallionella and Sideroxydans dominated the bacterial communities across nine sites and seven MWBs, while three sites within a single MWB, were dominated by S-oxidizing Epsilonbacteraeota genera Sulfuricurvum and Sulfurovum. The cooccurrence of pairs of Fe(II)- and S-oxidizing bacterial genera suggests functional redundancy, which coupled with genus-specific morphologies and life strategies, indicates the importance of distinct environmental and ecological niches within the SWC groundwater at seasonal and regional scales.
黄铁矿氧化驱动了地球上地下环境中铁和硫的可利用性,并且部分是由微生物介导的。地下微生物群落通过风化黄铁矿表面直接在接近中性的pH值下加速这一过程,并且通过引起周围微环境的变化间接加速这一过程,从而进一步加速黄铁矿风化。然而,我们对富含铁和硫的岩性(例如黄铁矿煤)中的群落结构动态以及相关生物地球化学的理解是有限的。在此,我们利用16S rRNA基因扩增子测序,首次对南威尔士煤田(SWC)一个以黄铁矿煤为基础的含水层中的细菌地下水群落进行了全面的区域和季节性属水平调查。群落结构的季节性变化有限,表明地表过程对地下群落的影响有限。相反,水文地质上不同的矿井水块(MWB)和煤阶在很大程度上解释了不同地点细菌群落结构的变化。在九个地点和七个MWB中,铁(II)氧化β-变形菌属的嘉利翁氏菌属和嗜铁氧化菌属主导了细菌群落,而在一个MWB内的三个地点,则由硫氧化ε-变形菌属的硫化弯曲菌属和硫化还原菌属主导。铁(II)氧化和硫氧化细菌属对的共存表明功能冗余,这与属特异性形态和生活策略相结合,表明了在季节性和区域尺度上SWC地下水中不同环境和生态位的重要性。