Department of Zoology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
Syst Biol. 2011 Jul;60(4):410-9. doi: 10.1093/sysbio/syr007. Epub 2011 Mar 4.
A common pattern found in phylogeny-based empirical studies of diversification is a decrease in the rate of lineage accumulation toward the present. This early-burst pattern of cladogenesis is often interpreted as a signal of adaptive radiation or density-dependent processes of diversification. However, incomplete taxonomic sampling is also known to artifactually produce patterns of rapid initial diversification. The Monte Carlo constant rates (MCCR) test, based upon Pybus and Harvey's gamma (γ)-statistic, is commonly used to accommodate incomplete sampling, but this test assumes that missing taxa have been randomly pruned from the phylogeny. Here we use simulations to show that preferentially sampling disparate lineages within a clade can produce severely inflated type-I error rates of the MCCR test, especially when taxon sampling drops below 75%. We first propose two corrections for the standard MCCR test, the proportionally deeper splits that assumes missing taxa are more likely to be recently diverged, and the deepest splits only MCCR that assumes that all missing taxa are the youngest lineages in the clade, and assess their statistical properties. We then extend these two tests into a generalized form that allows the degree of nonrandom sampling (NRS)to be controlled by a scaling parameter, α. This generalized test is then applied to two recent studies. This new test allows systematists to account for nonrandom taxonomic sampling when assessing temporal patterns of lineage diversification in empirical trees. Given the dramatic affect NRS can have on the behavior of the MCCR test, we argue that evaluating the sensitivity of this test to NRS should become the norm when investigating patterns of cladogenesis in incompletely sampled phylogenies.
在基于系统发育的多样化实证研究中,通常会发现一个共同的模式,即谱系积累的速度朝着现在逐渐降低。这种早期爆发的分支模式通常被解释为适应辐射或多样化的密度依赖过程的信号。然而,不完全的分类采样也已知会人为地产生快速初始多样化的模式。基于 Pybus 和 Harvey 的伽马(γ)统计量的蒙特卡罗恒定速率(MCCR)检验常用于适应不完全采样,但该检验假设缺失的分类单元已从系统发育树上随机修剪。在这里,我们使用模拟来表明,在一个进化枝内优先采样不同的谱系会导致 MCCR 检验的严重虚报Ⅰ型错误率,尤其是在分类单元采样低于 75%时。我们首先提出了两种对标准 MCCR 检验的修正方法,比例更深的分裂假设缺失的分类单元更可能是最近分化的,以及仅最深分裂的 MCCR 假设所有缺失的分类单元都是进化枝中的最年轻谱系,并评估它们的统计性质。然后,我们将这两种检验扩展为一种广义形式,允许通过缩放参数 α 来控制非随机采样(NRS)的程度。这种广义检验随后应用于两项最近的研究。这个新的检验允许系统发育学家在评估经验树上谱系多样化的时间模式时,考虑到非随机的分类采样。鉴于 NRS 对 MCCR 检验行为的显著影响,我们认为,在调查不完全采样的系统发育树中分支模式时,评估该检验对 NRS 的敏感性应该成为规范。