Suppr超能文献

伪连续传递敏感标记技术。

Pseudo-continuous transfer insensitive labeling technique.

机构信息

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Magn Reson Med. 2011 Sep;66(3):768-76. doi: 10.1002/mrm.22815. Epub 2011 Mar 4.

Abstract

Transfer insensitive labeling technique (TILT) was previously applied to acquire multislice cerebral blood flow maps as a pulsed arterial spin labeling (PASL) method. The magnetization transfer effect with TILT is well controlled by using concatenated radiofrequency pulses. However, use of TILT has been limited by several challenges, including slice profile errors, sensitivity to arterial transit time and intrinsic low signal-to-noise ratio (SNR). In this work, we propose to address these challenges by making the original TILT method into a novel pseudo-continuous arterial spin labeling approach, named pseudo-continuous transfer insensitive labeling technique (pTILT). pTILT improves perfusion acquisitions by (i) realizing pseudo-continuous tagging with nonadiabatic pulses, (ii) being sensitive to slow flows in addition to fast flows, and (iii) providing flexible labeling geometries. Perfusion maps during both resting state and functional tasks are successfully demonstrated in healthy volunteers with pTILT. A comparison with typical SNR values from other perfusion techniques shows that although pTILT provides less SNR than inversion-based pseudo-continuous ASL techniques, the modified sequence provides similar SNR to inversion-based PASL techniques.

摘要

转移不敏感标记技术(TILT)先前被应用于获取多层脑血流图作为脉冲动脉自旋标记(PASL)方法。通过使用串联射频脉冲,可以很好地控制 TILT 的磁化转移效应。然而,TILT 的使用受到了几个挑战的限制,包括切片轮廓误差、对动脉通过时间和固有低信噪比(SNR)的敏感性。在这项工作中,我们提出通过将原始 TILT 方法改进为一种新的伪连续动脉自旋标记方法,称为伪连续转移不敏感标记技术(pTILT),来解决这些挑战。pTILT 通过以下方式改善灌注采集:(i)使用非绝热脉冲实现伪连续标记,(ii)除了快速流动之外还对缓慢流动敏感,以及(iii)提供灵活的标记几何形状。在健康志愿者中,使用 pTILT 成功地演示了静息状态和功能任务期间的灌注图。与来自其他灌注技术的典型 SNR 值的比较表明,尽管 pTILT 提供的 SNR 低于基于反转的伪连续 ASL 技术,但改进后的序列提供的 SNR 与基于反转的 PASL 技术相似。

相似文献

1
Pseudo-continuous transfer insensitive labeling technique.
Magn Reson Med. 2011 Sep;66(3):768-76. doi: 10.1002/mrm.22815. Epub 2011 Mar 4.
3
Optimizing pTILT perfusion imaging in the presence of off-resonance frequency.
J Magn Reson Imaging. 2013 Jul;38(1):210-6. doi: 10.1002/jmri.23968. Epub 2012 Dec 13.
4
Optimization of simultaneous multislice EPI for concurrent functional perfusion and BOLD signal measurements at 7T.
Magn Reson Med. 2017 Jul;78(1):121-129. doi: 10.1002/mrm.26351. Epub 2016 Jul 28.
5
Regional perfusion imaging using pTILT.
J Magn Reson Imaging. 2014 Jul;40(1):192-9. doi: 10.1002/jmri.24346. Epub 2013 Oct 17.
7
Combined angiography and perfusion using radial imaging and arterial spin labeling.
Magn Reson Med. 2019 Jan;81(1):182-194. doi: 10.1002/mrm.27366. Epub 2018 Jul 19.
8
Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods.
Neuroimage. 2015 Aug 15;117:191-201. doi: 10.1016/j.neuroimage.2015.05.048. Epub 2015 May 27.
9
Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T.
NMR Biomed. 2014 Nov;27(11):1387-96. doi: 10.1002/nbm.3201. Epub 2014 Sep 26.
10
Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging.
Magn Reson Med. 2016 Jan;75(1):238-48. doi: 10.1002/mrm.25641. Epub 2015 Mar 2.

引用本文的文献

1
Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging.
Magn Reson Med. 2016 Jan;75(1):238-48. doi: 10.1002/mrm.25641. Epub 2015 Mar 2.
2
Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods.
Psychophysiology. 2014 Nov;51(11):1072-88. doi: 10.1111/psyp.12288. Epub 2014 Aug 6.
3
Cardiorespiratory fitness mediates the effects of aging on cerebral blood flow.
Front Aging Neurosci. 2014 Apr 7;6:59. doi: 10.3389/fnagi.2014.00059. eCollection 2014.
4
Localized blood flow imaging using quantitative flow-enhanced signal intensity.
Magn Reson Med. 2012 Mar;67(3):660-8. doi: 10.1002/mrm.23046. Epub 2011 Jun 28.

本文引用的文献

1
Determination of spin compartment in arterial spin labeling MRI.
Magn Reson Med. 2011 Jan;65(1):120-7. doi: 10.1002/mrm.22601.
2
Theoretical and experimental evaluation of continuous arterial spin labeling techniques.
Magn Reson Med. 2010 Feb;63(2):438-46. doi: 10.1002/mrm.22243.
4
Measuring arterial and tissue responses to functional challenges using arterial spin labeling.
Neuroimage. 2010 Jan 1;49(1):478-87. doi: 10.1016/j.neuroimage.2009.07.040. Epub 2009 Jul 25.
5
Can arterial spin labeling detect white matter perfusion signal?
Magn Reson Med. 2009 Jul;62(1):165-73. doi: 10.1002/mrm.22002.
9
Vessel-encoded arterial spin-labeling using pseudocontinuous tagging.
Magn Reson Med. 2007 Dec;58(6):1086-91. doi: 10.1002/mrm.21293.
10
Functional imaging with FENSI: flow-enhanced signal intensity.
Magn Reson Med. 2007 Aug;58(2):396-401. doi: 10.1002/mrm.21325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验