Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Inorg Chem. 2011 Apr 4;50(7):2885-96. doi: 10.1021/ic102094d. Epub 2011 Mar 7.
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex Fe(IV)(O)(TMG(3)tren) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, Fe(IV)(CN)(TMG(3)tren) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex Fe(II)(CN)(TMG(3)tren) (2), via the S = 5/2 complex Fe(III)(CN)(TMG(3)tren) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.
目前,仅有少数几个合成的 S = 2 氧代铁(IV)配合物。这些配合物作为高自旋(S = 2)氧代铁(IV)物种的模型,这些物种已被假定为多种非血红素氧激活酶催化循环中的关键中间体,并在某些情况下得到证实。三斜双锥配合物 [Fe(IV)(O)(TMG(3)tren)](2+)(1)是第一个高产率生成的 S = 2 氧代铁(IV)模型配合物,也是第一个结晶学表征的配合物。在这项研究中,我们证明 TMG(3)tren 配体也能够支持三价氰基铁(IV)单元 [Fe(IV)(CN)(TMG(3)tren)](3+)(4)。该配合物是通过高自旋(S = 2)铁(II)配合物 [Fe(II)(CN)(TMG(3)tren)](+)(2)的电解氧化生成的,通过 S = 5/2 配合物 [Fe(III)(CN)(TMG(3)tren)](2+)(3),其进展通过使用紫外-可见光谱方便地监测,以跟踪吸光度向长波长移动的配体-金属电荷转移(LMCT)带的增长。X 射线吸收光谱(XAS)、穆斯堡尔和 NMR 光谱的组合用于确定 4 具有 S = 0 铁(IV)中心。与顺磁性铁(IV)基态一致,4 的扩展 X 射线吸收精细结构(EXAFS)分析表明,铁供体原子键长显著收缩,与结晶学表征的配合物 2 和 3 相比。值得注意的是,4 的 Fe(IV/III)还原电位约为 1.4 V 相对于 Fc(+/o),这是迄今为止观察到的单核配合物的最高值。4 的相对稳定性(在含有 0.1 M KPF(6)的 CD(3)CN 溶液中 25°C 时的 t(1/2)≈15 分钟),反映在其通过缓慢的 bulk 电解高产率积累和在-40°C 下进行(13)C NMR 的适用性,突出了 TMG(3)tren 配体的空间位阻保护、高碱性全烷基胍基供体支持高电荷高价配合物的能力。