Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040, USA.
Technol Cancer Res Treat. 2011 Apr;10(2):121-34. doi: 10.7785/tcrt.2012.500187.
Optical methods such as reflectance and fluorescence spectroscopy are being investigated for their potential to aid cancer detection in a quantitative, minimally invasive manner. Mathematical models of reflectance and fluorescence provide an important link between measured optical data and biomedically-relevant tissue parameters that can be extracted from these data to characterize the presence or absence of disease. The most commonly-used mathematical models in biomedical optics are the diffusion approximation (DA) to the radiative transfer equation, Monte Carlo (MC) computational models of light transport, and semi-empirical models. This paper presents a review of the applications of these models to reflectance and endogenous fluorescence sensing for cancer diagnostics in human tissues. Specific examples are given for cervical, breast, and pancreatic tissues. A comparison of the DA and MC methods in two biologically-relevant regimes of optical parameter space will also be discussed.
光学方法,如反射和荧光光谱学,正在被研究,以其在定量、微创的癌症检测方面的潜力。反射和荧光的数学模型在测量的光学数据和可以从这些数据中提取出来以描述疾病的存在或不存在的生物医学相关组织参数之间提供了一个重要的联系。生物医学光学中最常用的数学模型是辐射传输方程的扩散近似(DA)、光传输的蒙特卡罗(MC)计算模型和半经验模型。本文综述了这些模型在人体组织中用于反射和内源性荧光传感的癌症诊断中的应用。还给出了宫颈、乳房和胰腺组织的具体例子。还将讨论在两个生物相关的光学参数空间的 DA 和 MC 方法的比较。