Frankfurt Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Germany.
J Struct Biol. 2011 Jun;174(3):494-504. doi: 10.1016/j.jsb.2011.02.009. Epub 2011 Mar 5.
Classification of electron sub-tomograms is a challenging task, due the missing-wedge and the low signal-to-noise ratio of the data. Classification algorithms tend to classify data according to their orientation to the missing-wedge, rather than to the underlying signal. Here we use a neural network approach, called the Kernel Density Estimator Self-Organizing Map (KerDenSOM3D), which we have implemented in three-dimensions (3D), also having compensated for the missing-wedge, and we comprehensively compare it to other classification methods. For this purpose, we use various simulated macromolecules, as well as tomographically reconstructed in vitro GroEL and GroEL/GroES molecules. We show that the performance of this classification method is superior to previously used algorithms. Furthermore, we show how this algorithm can be used to provide an initial cross-validation of template-matching approaches. For the example of sub-tomogram classification extracted from cellular tomograms of Mycoplasma pneumonia and Spiroplasma melliferum cells, we show the bias of template-matching, and by using differing search and classification areas, we demonstrate how the bias can be significantly reduced.
电子子断层图像的分类是一项具有挑战性的任务,这是由于数据存在缺失楔形和低信噪比。分类算法往往根据数据相对于缺失楔形的方向进行分类,而不是根据潜在的信号进行分类。在这里,我们使用了一种称为核密度估计自组织映射(KerDenSOM3D)的神经网络方法,我们已经在三维(3D)中实现了该方法,同时也对其进行了缺失楔形的补偿,并将其与其他分类方法进行了全面比较。为此,我们使用了各种模拟的大分子,以及体外重建的 GroEL 和 GroEL/GroES 分子进行断层摄影。我们表明,这种分类方法的性能优于以前使用的算法。此外,我们还展示了如何使用这种算法来提供模板匹配方法的初步交叉验证。以从肺炎支原体和蜜蜂螺旋体细胞的细胞断层图像中提取的子断层图像分类为例,我们展示了模板匹配的偏差,并通过使用不同的搜索和分类区域,我们演示了如何显著降低这种偏差。