Yu Xueshi, Han Renmin, Jiao Haitao, Meng Wenjia
School of Software, Shandong University, 1500 Shunhua Road, 250101 Jinan, China.
Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, 72 Binhai Road, 266000 Qingdao, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae643.
Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we enhance the model's generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate our method. Results show that our method improves the classification capabilities by introducing the joint distribution.
少样本学习是低温电子断层扫描(Cryo-ET)子体积大分子分类的关键方法,能够通过少量带标签数据的支持集快速适应新任务。然而,现有的Cryo-ET中大分子少样本分类方法仅考虑边缘分布而忽略联合分布,无法充分捕捉特征依赖性。为解决此问题,我们提出一种使用深度布朗距离协方差(BDC)的大分子少样本分类方法。我们的方法在迁移学习框架内对联合分布进行建模,增强建模能力。我们在特征提取器之后插入BDC模块,并且在训练阶段仅训练特征提取器。然后,我们使用自蒸馏技术增强模型的泛化能力。在适应阶段,我们使用最少的带标签数据对分类器进行微调。我们在公开可用的SHREC数据集和一个小规模合成数据集上进行实验以评估我们的方法。结果表明,我们的方法通过引入联合分布提高了分类能力。