Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium.
Mol Cell Proteomics. 2011 May;10(5):M110.004580. doi: 10.1074/mcp.M110.004580. Epub 2011 Mar 7.
The impact of N(α)-terminal acetylation on protein stability and protein function in general recently acquired renewed and increasing attention. Although the substrate specificity profile of the conserved enzymes responsible for N(α)-terminal acetylation in yeast has been well documented, the lack of higher eukaryotic models has hampered the specificity profile determination of N(α)-acetyltransferases (NATs) of higher eukaryotes. The fact that several types of protein N termini are acetylated by so far unknown NATs stresses the importance of developing tools for analyzing NAT specificities. Here, we report on a method that implies the use of natural, proteome-derived modified peptide libraries, which, when used in combination with two strong cation exchange separation steps, allows for the delineation of the in vitro specificity profiles of NATs. The human NatA complex, composed of the auxiliary hNaa15p (NATH/hNat1) subunit and the catalytic hNaa10p (hArd1) and hNaa50p (hNat5) subunits, cotranslationally acetylates protein N termini initiating with Ser, Ala, Thr, Val, and Gly following the removal of the initial Met. In our studies, purified hNaa50p preferred Met-Xaa starting N termini (Xaa mainly being a hydrophobic amino acid) in agreement with previous data. Surprisingly, purified hNaa10p preferred acidic N termini, representing a group of in vivo acetylated proteins for which there are currently no NAT(s) identified. The most prominent representatives of the group of acidic N termini are γ- and β-actin. Indeed, by using an independent quantitative assay, hNaa10p strongly acetylated peptides representing the N termini of both γ- and β-actin, and only to a lesser extent, its previously characterized substrate motifs. The immunoprecipitated NatA complex also acetylated the actin N termini efficiently, though displaying a strong shift in specificity toward its known Ser-starting type of substrates. Thus, complex formation of NatA might alter the substrate specificity profile as compared with its isolated catalytic subunits, and, furthermore, NatA or hNaa10p may function as a post-translational actin N(α)-acetyltransferase.
N(α)-末端乙酰化对蛋白质稳定性和一般蛋白质功能的影响最近重新引起了人们的关注和兴趣。尽管酵母中负责 N(α)-末端乙酰化的保守酶的底物特异性谱已经得到很好的记录,但缺乏高等真核生物模型阻碍了高等真核生物 N(α)-乙酰基转移酶(NATs)的特异性谱测定。事实上,目前尚不知道的 NATs 乙酰化了几种类型的蛋白质 N 末端,这强调了开发分析 NAT 特异性的工具的重要性。在这里,我们报告了一种方法,该方法涉及使用天然的蛋白质衍生的修饰肽文库,当与两个强阳离子交换分离步骤结合使用时,该方法允许描绘 NAT 的体外特异性谱。由辅助 hNaa15p(NATH/hNat1)亚基和催化 hNaa10p(hArd1)和 hNaa50p(hNat5)亚基组成的人 NatA 复合物,在翻译起始 Met 去除后,共翻译乙酰化起始于 Ser、Ala、Thr、Val 和 Gly 的蛋白质 N 末端。在我们的研究中,纯化的 hNaa50p 优先选择 Met-Xaa 起始 N 末端(Xaa 主要是疏水性氨基酸),这与先前的数据一致。令人惊讶的是,纯化的 hNaa10p 优先选择酸性 N 末端,代表了一组目前尚未鉴定出 NAT 的体内乙酰化蛋白。酸性 N 末端组的最突出代表是 γ-和 β-肌动蛋白。事实上,通过使用独立的定量测定法,hNaa10p 强烈乙酰化了代表 γ-和 β-肌动蛋白的 N 末端的肽,并且仅在较小程度上乙酰化其先前表征的底物基序。免疫沉淀的 NatA 复合物也有效地乙酰化肌动蛋白的 N 末端,尽管其特异性相对于其已知的 Ser 起始型底物有很大的偏移。因此,与分离的催化亚基相比,NatA 复合物的形成可能会改变其底物特异性谱,并且 NatA 或 hNaa10p 可能作为肌动蛋白 N(α)-乙酰基转移酶发挥作用。