Suppr超能文献

非马尔可夫动力学无序环境中的激发能量转移:局域化、变窄和转移效率。

Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency.

机构信息

Department of Chemistry and Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

J Phys Chem B. 2011 May 12;115(18):5499-509. doi: 10.1021/jp111068w. Epub 2011 Mar 8.

Abstract

The non-markovian effect of a fluctuating environment plays an important role in electronic excitation transfer in organic disordered media, such as light-harvesting systems and conjugated polymers. Stochastic Liouville equations (SLE) are used to study the interaction between excitons and the environment. We model the non-markovian environment phenomenologically with a dichotomic process. An exact approach to solve the SLE based on Shapiro and Loginov's differentiation formulas allows us to rigorously study the effect of the non-markovian environment on excitation energy transfer, such as coherence conservation and its implication for transfer efficiency. This simple SLE model goes beyond the perturbative second-order master equation valid for both the weak coupling and short time correlation conditions. In addition, we discuss why our non-markovian model is a good approximation to the SLE model driven by the stationary Gauss-Markov process (Ornstein-Uhlenbeck process) over a broad range of fluctuation strengths and correlation times. Numerical results based on our SLE model for dimeric aggregates and the Fenna-Matthews-Olson (FMO) complex reveal the important interplay of intermolecular coupling, correlation time, and fluctuation strength, and their effects on the exciton relaxation process due to the environmental phonon. The results also uncover the connection between localization and motional narrowing, and the efficiency of electronic excitation transfer, demonstrating that the non-markovian environment is critical for chromophore aggregates to achieve an optimal transfer rate in a noisy environment and to contribute to the robustness of the FMO excitation energy transfer network.

摘要

环境涨落的非马尔可夫效应在有机无序介质中的电子激发转移中起着重要作用,例如光捕获系统和共轭聚合物。随机刘维尔方程 (SLE) 用于研究激子与环境的相互作用。我们用二分过程对非马尔可夫环境进行唯象建模。基于 Shapiro 和 Loginov 的微分公式的求解 SLE 的精确方法使我们能够严格研究非马尔可夫环境对激发能量转移的影响,例如相干性守恒及其对转移效率的影响。这个简单的 SLE 模型超越了适用于弱耦合和短时间相关条件的微扰二阶主方程。此外,我们还讨论了为什么我们的非马尔可夫模型是由稳态高斯-马尔可夫过程(奥恩斯坦-乌伦贝克过程)驱动的 SLE 模型的一个很好的近似,适用于广泛的涨落强度和相关时间范围。基于我们的 SLE 模型对二聚体聚集体和芬纳-马修-奥尔森 (FMO) 复合物的数值结果揭示了分子间耦合、相关时间和涨落强度的重要相互作用,以及它们对环境声子引起的激子弛豫过程的影响。结果还揭示了定位和运动变窄之间的联系,以及电子激发转移的效率,表明非马尔可夫环境对于发色团聚集体在嘈杂环境中实现最佳转移率以及对 FMO 激发能量转移网络的稳健性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验