Strümpfer Johan, Schulten Klaus
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign.
J Chem Theory Comput. 2012 Aug 14;8(8):2808-2816. doi: 10.1021/ct3003833. Epub 2012 Jun 15.
Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.
多年来,计算开放量子系统(即与热环境接触的系统)的演化一直是一个理论和计算难题。随着具备大量内存和众多处理器的超级计算机的出现,此前难以处理的理论模型所带来的计算挑战如今得以解决。运动方程层级体系就是这样一种模型,它提供了一种强大的方法,但由于计算成本高昂,至今仍未得到充分利用。通过利用并行计算机上的并发处理,运动方程层级体系可应用于生物尺度的系统。在此,我们介绍求解运动方程层级体系的量子动力学软件PHI。我们描述了PHI所采用的积分器,并通过将该软件应用于计算紫色光合细菌光捕获复合物1和2(一个包含50种色素的系统)之间的复合物间激发转移,展示了PHI在大型并行计算机上的扩展性和效率。