Suppr超能文献

纳米碳和纳米线的结构、电子、光学和振动特性:通俗评论。

Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

机构信息

Department of Physics, Penn State University, 104 Davey Lab MB123, University Park, PA 16802-6300, USA.

出版信息

J Phys Condens Matter. 2010 Aug 25;22(33):334201. doi: 10.1088/0953-8984/22/33/334201. Epub 2010 Aug 4.

Abstract

This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature 338 257-9, Rao et al 1997b Phys. Rev. B 55 4766-73, Rao et al 1997c Science 275 187-91, Rao et al 1998 Thin Solid Films 331 141-7). His careful sample treatment and detailed Raman analysis contributed greatly to the elucidation of photochemical polymerization of solid C(60) (Rao et al 1993b Science 259 955-7). He developed Raman spectroscopy as a standard tool for gauging the diameter of a single-walled carbon nanotube (Bandow et al 1998 Phys. Rev. Lett. 80 3779-82), distinguishing metallic versus semiconducting single-walled carbon nanotubes, (Pimenta et al 1998a J. Mater. Res. 13 2396-404) and measuring the number of graphene layers in a peeled flake of graphite (Gupta et al 2006 Nano Lett. 6 2667-73). For these and other ground breaking contributions to carbon science he received the Graffin Lecture award from the American Carbon Society in 2005, and the Japan Carbon Prize in 2008. As a material, graphite has come full circle. The 1970s renaissance in the science of graphite intercalation compounds paved the way for a later explosion in nanocarbon research by illuminating many beautiful fundamental phenomena, subsequently rediscovered in other forms of nanocarbon. In 1985, Smalley, Kroto, Curl, Heath and O'Brien discovered carbon cage molecules called fullerenes in the soot ablated from a rotating graphite target (Kroto et al 1985 Nature 318 162-3). At that time, Peter's research was focused mainly on the oxide-based high-temperature superconductors. He switched to fullerene research soon after the discovery that an electric arc can prepare fullerenes in bulk quantities (Haufler et al 1990 J. Phys. Chem. 94 8634-6). Later fullerene research spawned nanotubes, and nanotubes spawned a newly exploding research effort on single-layer graphene. Graphene has hence evolved from an oversimplified model of graphite (Wallace 1947 Phys. Rev. 71 622-34) to a new member of the nanocarbon family exhibiting extraordinary electronic properties. Eklund's career spans this 35-year odyssey.

摘要

这篇综述从彼得·埃克隆德的科学生涯视角出发,探讨了纳米科学领域,因此特别关注纳米碳和纳米线。彼得在研究中展现了强烈的专注、想象力、坚韧、广度和创造力,这些在现代科学中很少见。他的目标是捕捉自然现象的基本物理特性。这种态度也指导着我们的写作:我们专注于基本原理,在不牺牲准确性的前提下,同时希望传达出与彼得相称的对科学的热情。“口语综述”一词旨在捕捉这种呈现风格。凝聚态物理的各种现象涉及电子、声子以及激发态所在的结构。“纳米”领域呈现出特别有趣和具有挑战性的科学。有限尺寸效应起着关键作用,例如 C(60) 和其他富勒烯的离散电子和声子谱所体现的那样。这些分子(以及纳米管和石墨烯)的美丽反映在控制其行为的理论原则上。至于挑战,“纳米”需要特别注意材料的制备和处理,因为表面积与体积比非常高;由于样品通常很小,因此获取实验信号也存在困难。所有原子都参与了各种现象,没有任何真正的“体相”性质。彼得是克服这些挑战的大师。埃克隆德研究的主要活动是测量和理解碳材料中原子的振动。拉曼光谱对彼得来说非常重要。他发表了几篇关于声子理论的论文(Eklund 等人,1995a,Carbon 33,959-72;Eklund 等人,1995b,Thin Solid Films 257,211-32;Eklund 等人,1992,J. Phys. Chem. Solids 53,1391-413;Dresselhaus 和 Eklund,2000,Adv. Phys. 49,705-814)以及许多关于测量声子的论文(Pimenta 等人,1998b,Phys. Rev. B 58,16016-9;Rao 等人,1997a,Nature 338,257-9;Rao 等人,1997b,Phys. Rev. B 55,4766-73;Rao 等人,1997c,Science 275,187-91;Rao 等人,1998,Thin Solid Films 331,141-7)。他仔细的样品处理和详细的拉曼分析对阐明固体 C(60)的光化学聚合(Rao 等人,1993b,Science 259,955-7)贡献巨大。他将拉曼光谱发展成为一种标准工具,用于测量单壁碳纳米管的直径(Bandow 等人,1998,Phys. Rev. Lett. 80,3779-82),区分金属和半导体单壁碳纳米管(Pimenta 等人,1998a,J. Mater. Res. 13,2396-404),并测量剥离石墨片中的石墨烯层数(Gupta 等人,2006,Nano Lett. 6,2667-73)。由于这些以及其他开创性的碳科学贡献,他于 2005 年获得了美国碳学会的 Graffin 讲座奖,并于 2008 年获得了日本碳奖。作为一种材料,石墨已经完成了一个完整的循环。20 世纪 70 年代,石墨插层化合物科学的复兴为后来的纳米碳研究的爆炸铺平了道路,揭示了许多美丽的基本现象,这些现象后来在其他形式的纳米碳中重新发现。1985 年,斯莫利、克罗托、库尔、希思和奥布赖恩在旋转石墨靶的电弧中发现了称为富勒烯的碳笼分子(Kroto 等人,1985,Nature 318,162-3)。当时,彼得的研究主要集中在基于氧化物的高温超导材料上。富勒烯发现后不久,他就转向富勒烯研究,当时发现电弧可以大量制备富勒烯(Haufler 等人,1990,J. Phys. Chem. 94,8634-6)。后来的富勒烯研究产生了纳米管,而纳米管又产生了对单层石墨烯的新的爆发式研究。因此,石墨烯已经从石墨的简化模型(Wallace,1947,Phys. Rev. 71,622-34)演变成具有非凡电子性质的纳米碳家族的新成员。埃克隆德的职业生涯跨越了这 35 年的历程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验