Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest, Hungary.
J Phys Condens Matter. 2010 Sep 15;22(36):364101. doi: 10.1088/0953-8984/22/36/364101. Epub 2010 Aug 20.
We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.
我们应用简单动力密度泛函理论,即过阻尼保守动力学的相场晶体(PFC)模型,来解决扩散控制极限下的多晶型性、晶体成核和晶体生长问题。我们改进了 3D 的相图,并通过求解各自的欧拉-拉格朗日(EL)方程,确定了 2D 的自由能线以及 2D 和 3D 的异质和同质成核的成核势垒高度。我们证明,在 PFC 模型中,体心立方(bcc)、面心立方(fcc)和六方密堆积结构(hcp)相互竞争,而简单立方结构不稳定,通过改变模型参数可以调整相偏好:接近临界点时 bcc 结构稳定,而远离临界点时 fcc 占优势,中间存在 hcp 稳定域。我们注意到,随着远离临界点,平衡形状从球体变为特定的有面形状:菱形十二面体(bcc)、截角八面体(fcc)和六方棱柱(hcp)。通过求解带有守恒噪声的 PFC 模型的运动方程,凝固从无定形前体相的成核开始,然后稳定的晶相成核。发现生长速率是时间相关的和各向异性的;这种各向异性取决于驱动力。我们表明,由于扩散控制的生长机制,特别是对于胶体系统中的晶体聚集,在大规模等温单相 PFC 模拟中会出现树枝状生长结构。从通过瞬时淬火获得的无定形相的结构数据评估了类似于模型玻璃形成体的振荡有效对势能。最后,我们提出了二元 PFC 模型的共晶凝固结果。