Suppr超能文献

带电胶体的泊松-玻尔兹曼理论:盐溶液中胞腔模型的极限。

Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions.

机构信息

Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.

出版信息

J Phys Condens Matter. 2010 Sep 15;22(36):364108. doi: 10.1088/0953-8984/22/36/364108. Epub 2010 Aug 20.

Abstract

Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to colloidal suspensions and other soft materials.

摘要

荷电胶体悬浮液和聚电解质溶液的热力学性质通常通过在单元模型中实施平均场泊松-玻尔兹曼(PB)理论来建模。该方法通过将单个大分子离子与抗衡离子和盐离子一起限制在对称形状的电中性单元中来模拟体相系统。虽然这种单元模型简化了非线性 PB 方程的数值求解,但它忽略了微离子诱导的大分子离子之间的相互作用和相关性,从而无法模拟大分子离子的有序化现象。另一种方法避免了单元几何形状的人为限制,利用大分子离子-微离子混合物映射到由有效粒子间相互作用控制的单一组分拟大分子模型。在实践中,有效相互作用模型通常基于线性屏蔽近似,该近似只有通过包含有效(重归一化)大分子离子电荷才能准确描述强非线性屏蔽。通过在单元模型和有效相互作用(无单元)模型中结合电荷重归一化和线性 PB 理论,我们计算了在盐库中的 Donnan 平衡下,高电荷胶体和单价微离子在一系列浓度下的渗透压。通过将预测值与无盐悬浮液的原始模型模拟数据以及含盐悬浮液的非线性 PB 理论预测值进行比较,我们绘制了单元模型和线性屏蔽近似在模拟体相热力学性质方面的限制图。在中等强度的静电耦合下,单元模型对于预测去离子(抗衡离子主导)悬浮液的渗透压是准确的。然而,随着盐浓度的增加,大分子离子相互作用对渗透压的相对贡献增加,导致单元和有效相互作用模型的预测值发生偏离。没有发现单价微离子驱动的液-气相不稳定性的证据。这些结果可能为 PB 理论在胶体悬浮液和其他软物质中的应用提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验